Skip to main content

Advertisement

Log in

A multi-center study of reoperations within 30 days of spine surgery

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To investigate the incidence and causes of reoperations within 30 days of spine surgery.

Methods

Patients who underwent spine surgery between 2002 and 2012, at one of 9 institutions, were enrolled. The causes of all reoperations, within 30 days of the index surgery, were reviewed. The incidence of reoperations within 30 days were calculated and compared according to the preoperative diagnosis, use of instrumentation, surgical level, and approach. Moreover, the distribution of the causes for reoperations within the 30-day period was also assessed.

Results

The overall incidence of reoperations, within 30 days of spine surgery, was 1.6 % (175/10,680). Patients who underwent instrumentation procedures demonstrated a higher incidence of reoperations than patients who underwent procedures without instrumentation (P < 0.001). Moreover, patients diagnosed with preoperative trauma had a higher incidence of reoperation than those with other diagnoses (P < 0.001). Surgical site infection (SSI), postoperative epidural hematoma, pedicle screw malposition, and inadequate decompression were the four main causes of reoperation. Motor paralysis, due to epidural hematoma, was the predominant cause of reoperations during the hyper-acute phase (0–1 days, postoperatively), whereas SSI was the dominant cause during the sub-acute phase (11–30 days, postoperatively).

Conclusions

This large, multi-center study indicated the causes and incidence of reoperations, within 30 days of the initial spinal surgery. Based on these data, spinal surgeons can provide patients with information that allows them to better understand the surgical risk and expected post-surgical management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Pichelmann MA, Lenke LG, Bridwell KH, Good CR, O’Leary PT, Sides BA (2010) Revision rates following primary adult spinal deformity surgery: six hundred forty-three consecutive patients followed-up to twenty-two years postoperative. Spine 35:219–226. doi:10.1097/BRS.0b013e3181c91180

    Article  PubMed  Google Scholar 

  2. Jansson KA, Nemeth G, Granath F, Blomqvist P (2005) Spinal stenosis re-operation rate in Sweden is 11% at 10 years–a national analysis of 9664 operations. Eur Spine J 14:659–663. doi:10.1007/s00586-004-0851-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Martin BI, Mirza SK, Comstock BA, Gray DT, Kreuter W, Deyo RA (2007) Reoperation rates following lumbar spine surgery and the influence of spinal fusion procedures. Spine 32:382–387. doi:10.1097/01.brs.0000254104.55716.46

    Article  PubMed  Google Scholar 

  4. Kim YJ, Bridwell KH, Lenke LG, Rhim S, Cheh G (2006) Pseudarthrosis in long adult spinal deformity instrumentation and fusion to the sacrum: prevalence and risk factor analysis of 144 cases. Spine 31:2329–2336. doi:10.1097/01.brs.0000238968.82799.d9

    Article  PubMed  Google Scholar 

  5. Martin BI, Mirza SK, Comstock BA, Gray DT, Kreuter W, Deyo RA (2007) Are lumbar spine reoperation rates falling with greater use of fusion surgery and new surgical technology? Spine 32:2119–2126. doi:10.1097/BRS.0b013e318145a56a

    Article  PubMed  Google Scholar 

  6. Martin CT, Pugely AJ, Gao Y, Ilgenfritz RM, Weinstein SL (2014) Incidence and risk factors for early wound complications after spinal arthrodesis in children: analysis of 30-day follow-up data from the ACS-NSQIP. Spine 39:1463–1470. doi:10.1097/BRS.0000000000000446

    Article  PubMed  Google Scholar 

  7. Abdul-Jabbar A, Berven SH, Hu SS, Chou D, Mummaneni PV, Takemoto S, Ames C, Deviren V, Tay B, Weinstein P, Burch S, Liu C (2013) Surgical site infections in spine surgery: identification of microbiologic and surgical characteristics in 239 cases. Spine 38:E1425–E1431. doi:10.1097/BRS.0b013e3182a42a68

    Article  PubMed  Google Scholar 

  8. Lovecchio F, Hsu WK, Smith TR, Cybulski G, Kim B, Kim JY (2014) Predictors of thirty-day readmission after anterior cervical fusion. Spine 39:127–133. doi:10.1097/BRS.0000000000000051

    Article  PubMed  Google Scholar 

  9. McCormack RA, Hunter T, Ramos N, Michels R, Hutzler L, Bosco JA (2012) An analysis of causes of readmission after spine surgery. Spine 37:1260–1266. doi:10.1097/BRS.0b013e318245f561

    Article  PubMed  Google Scholar 

  10. Wang MC, Shivakoti M, Sparapani RA, Guo C, Laud PW, Nattinger AB (2012) Thirty-day readmissions after elective spine surgery for degenerative conditions among US Medicare beneficiaries. Spine J 12:902–911. doi:10.1016/j.spinee.2012.09.051

    Article  PubMed  Google Scholar 

  11. Martin CT, Pugely AJ, Gao Y, Weinstein SL (2015) Causes and risk factors for 30-day unplanned readmissions after pediatric spinal deformity surgery. Spine 40:238–246. doi:10.1097/BRS.0000000000000730

    Article  PubMed  Google Scholar 

  12. Kadono Y, Yasunaga H, Horiguchi H, Hashimoto H, Matsuda S, Tanaka S, Nakamura K (2010) Statistics for orthopedic surgery 2006-2007: data from the Japanese Diagnosis Procedure Combination database. J Orthopc Sci 15:162–170. doi:10.1007/s00776-009-1448-2

    Article  Google Scholar 

  13. Schairer WW, Carrer A, Deviren V, Hu SS, Takemoto S, Mummaneni P, Chou D, Ames C, Burch S, Tay B, Sawyer A, Berven SH (2013) Hospital Readmission After Spine Fusion for Adult Spinal Deformity. Spine (Phila Pa 1976). doi:10.1097/BRS.0b013e31829c08c9

    Google Scholar 

  14. Petty W, Spanier S, Shuster JJ, Silverthorne C (1985) The influence of skeletal implants on incidence of infection. Experiments in a canine model. J Bone Joint Surg Am 67:1236–1244

    CAS  PubMed  Google Scholar 

  15. Gristina AG (1994) Implant failure and the immuno-incompetent fibro-inflammatory zone. Clin Orthop Relat Res (298):106–118

  16. An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348

    Article  CAS  PubMed  Google Scholar 

  17. Rechtine GR, Bono PL, Cahill D, Bolesta MJ, Chrin AM (2001) Postoperative wound infection after instrumentation of thoracic and lumbar fractures. J Orthop Trauma 15:566–569

    Article  CAS  PubMed  Google Scholar 

  18. O’Neill KR, Smith JG, Abtahi AM, Archer KR, Spengler DM, McGirt MJ, Devin CJ (2011) Reduced surgical site infections in patients undergoing posterior spinal stabilization of traumatic injuries using vancomycin powder. Spine J 11:641–646. doi:10.1016/j.spinee.2011.04.025

    Article  PubMed  Google Scholar 

  19. Sweet FA, Roh M, Sliva C (2011) Intrawound application of vancomycin for prophylaxis in instrumented thoracolumbar fusions: efficacy, drug levels, and patient outcomes. Spine 36:2084–2088. doi:10.1097/BRS.0b013e3181ff2cb1

    Article  PubMed  Google Scholar 

  20. Shamji MF, Cook C, Pietrobon R, Tackett S, Brown C, Isaacs RE (2009) Impact of surgical approach on complications and resource utilization of cervical spine fusion: a nationwide perspective to the surgical treatment of diffuse cervical spondylosis. Spine J 9:31–38. doi:10.1016/j.spinee.2008.07.005

    Article  PubMed  Google Scholar 

  21. Levi AD, Dickman CA, Sonntag VK (1997) Management of postoperative infections after spinal instrumentation. J Neurosurg 86:975–980. doi:10.3171/jns.1997.86.6.0975

    Article  CAS  PubMed  Google Scholar 

  22. Mok JM, Guillaume TJ, Talu U, Berven SH, Deviren V, Kroeber M, Bradford DS, Hu SS (2009) Clinical outcome of deep wound infection after instrumented posterior spinal fusion: a matched cohort analysis. Spine 34:578–583. doi:10.1097/BRS.0b013e31819a827c

    Article  PubMed  Google Scholar 

  23. Dommisse GF (1974) The blood supply of the spinal cord. A critical vascular zone in spinal surgery. J Bone Joint Surg Br 56:225–235

    CAS  PubMed  Google Scholar 

  24. Cramer DE, Maher PC, Pettigrew DB, Ct Kuntz (2009) Major neurologic deficit immediately after adult spinal surgery: incidence and etiology over 10 years at a single training institution. J Spinal Disord Tech 22:565–570. doi:10.1097/BSD.0b013e318193452a

    Article  PubMed  Google Scholar 

  25. Aono H, Ohwada T, Hosono N, Tobimatsu H, Ariga K, Fuji T, Iwasaki M (2011) Incidence of postoperative symptomatic epidural hematoma in spinal decompression surgery. J Neurosurg Spine 15:202–205. doi:10.3171/2011.3.SPINE10716

    Article  PubMed  Google Scholar 

  26. Neo M, Sakamoto T, Fujibayashi S, Nakamura T (2006) Delayed postoperative spinal epidural hematoma causing tetraplegia. Case report. J Neurosurg Spine 5:251–253. doi:10.3171/spi.2006.5.3.251

    Article  PubMed  Google Scholar 

  27. Sokolowski MJ, Dolan M, Aminian A, Haak MH, Schafer MF (2006) Delayed epidural hematoma after spinal surgery: a report of 4 cases. J Spinal Disord Tech 19:603–606. doi:10.1097/01.bsd.0000211242.44706.62

    Article  PubMed  Google Scholar 

  28. Wada E, Yonenobu K, Ebara S, Kuwahara O, Ono K (1993) Epidural migration of hemostatic agents as a cause of postthoracotomy paraplegia. Report of two cases. J Neurosurg 78:658–660. doi:10.3171/jns.1993.78.4.0658

    Article  CAS  PubMed  Google Scholar 

  29. Buchowski JM, Bridwell KH, Lenke LG, Good CR (2009) Epidural spinal cord compression with neurologic deficit associated with intrapedicular application of hemostatic gelatin matrix during pedicle screw insertion. Spine 34:E473–E477. doi:10.1097/BRS.0b013e3181a56a21

    Article  PubMed  Google Scholar 

  30. Kao FC, Tsai TT, Chen LH, Lai PL, Fu TS, Niu CC, Ho NY, Chen WJ, Chang CJ (2015) Symptomatic epidural hematoma after lumbar decompression surgery. Eur Spine J 24:348–357. doi:10.1007/s00586-014-3297-8

    Article  PubMed  Google Scholar 

  31. Khazim R, Dannawi Z, Spacey K, Khazim M, Lennon S, Reda A, Zaidan A (2015) Incidence and treatment of delayed symptoms of CSF leak following lumbar spinal surgery. Eur Spine J. doi:10.1007/s00586-015-3830-4

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayoshi Shimizu.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimizu, T., Fujibayashi, S., Takemoto, M. et al. A multi-center study of reoperations within 30 days of spine surgery. Eur Spine J 25, 828–835 (2016). https://doi.org/10.1007/s00586-015-4113-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-4113-9

Keywords

Navigation