Skip to main content

Advertisement

Log in

Cement-augmented screws in a cervical two-level corpectomy with anterior titanium mesh cage reconstruction: a biomechanical study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Study design

Biomechanical investigation.

Purpose

Cervical two-level corpectomies with anterior-only instrumentation are associated with a high rate of implant-related complications. These procedures, therefore, often require an additional dorsal instrumentation to prevent screw loosening. Cement augmentation of the anterior screws in two-level corpectomies might stabilize the construct, so that a second dorsal procedure could be avoided. To evaluate the screw anchorage in cervical anterior-only procedures, an ex vivo evaluation of the range of motion (ROM) in two-level corpectomies (C4 and C5), with and without cement augmentation of the anterior screws, was carried out in this study.

Methods

Twelve human cervical cadaveric spines (C2–T1) were divided into two groups of six specimens each. Corpectomies were performed in C4 and C5, with grafting and anterior instrumentation with and without cement augmentation of the anterior screw-and-plate system (0.3–0.5 mL cement/screw). Flexibility tests with pure moments (1.5 Nm) were carried out before and after three cyclic loading periods of 5000 cycles with increasing eccentric forces (100, 200, and 300 N).

Results

After corpectomy and instrumentation, the control group and the augmented group showed a significant reduction in ROM in comparison with the native states with average ROMs of 49% (±17%) and 24% (±10%), respectively (P = 0.006). The ROM in the control group increased significantly in all motion directions in the course of cyclic loading and approached native values after the third cyclic loading period, with an overall ROM of 78% (±22%). In contrast, the augmented group maintained a significantly decreased ROM in all motion directions during cyclic loading, with a final ROM of 32% (±14%) after the third period of cyclic testing. Inter-group comparison demonstrated a significant difference between the two groups in the course of cyclic loading. The cement-augmented group outperformed the control group in all motion directions, with a significantly lower ROM after all three cyclic loading periods.

Conclusions

A two-level corpectomy with cement-augmentation results in a significantly reduced ROM. In comparison with the conventional anterior screw-and-plate fixation, it represents a significantly stabilized two-level anterior construct. This might be a treatment option for patients with a two-level corpectomy associated with reduced bone mineral density, to avoid an additional dorsal instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boakye M, Patil CG, Ho C, Lad SP (2008) Cervical corpectomy: complications and outcomes. Neurosurgery 63(4 Suppl 2):295–301 discussion 301–2

    PubMed  Google Scholar 

  2. Vaccaro AR, Falatyn SP, Scuderi GJ, Eismont FJ, McGuire RA et al (1998) Early failure of long segment anterior cervical plate fixation. J Spinal Disord 11(5):410–415

    Article  CAS  PubMed  Google Scholar 

  3. Daubs MD (2005) Early failures following cervical corpectomy reconstruction with titanium mesh cages and anterior plating. Spine (Phila Pa 1976) 30(12):1402–1406

    Article  Google Scholar 

  4. Hartmann S, Thomé C, Keiler A, Fritsch H, Hegewald AA, Schmölz W (2015) Biomechanical testing of circumferential instrumentation after cervical multilevel corpectomy. Eur Spine J 24(12):2788–2798

    Article  PubMed  Google Scholar 

  5. Koller H, Schmoelz W, Zenner J, Auffarth A, Resch H et al (2015) Construct stability of an instrumented 2-level cervical corpectomy model following fatigue testing: biomechanical comparison of circumferential antero-posterior instrumentation versus a novel anterior-only transpedicular screw-plate fixation technique. Eur Spine J 24(12):2848–2856

    Article  PubMed  Google Scholar 

  6. Koller H, Schmidt R, Mayer M, Hitzl W, Zenner J et al (2010) The stabilizing potential of anterior, posterior and combined techniques for the reconstruction of a 2-level cervical corpectomy model: biomechanical study and first results of ATPS prototyping. Eur Spine J 19(12):2137–2148

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aryan HE, Sanchez-Mejia RO, Ben-Haim S, Ames CP (2007) Successful treatment of cervical myelopathy with minimal morbidity by circumferential decompression and fusion. Eur Spine J 16(9):1401–1409

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sevki K, Mehmet T, Ufuk T, Azmi H, Mercan S, Erkal B (2004) Results of surgical treatment for degenerative cervical myelopathy: anterior cervical corpectomy and stabilization. Spine (Phila Pa 1976) 29(22):2493–2500

    Article  Google Scholar 

  9. Wu C, Chen C, Wu W, Zhao W, Sun P et al (2015) Biomechanical analysis of differential pull-out strengths of bone screws using cervical anterior transpedicular technique in normal and osteoporotic cervical cadaveric spines. Spine (Phila Pa 1976) 40(1):E1–E8

    Article  Google Scholar 

  10. Waschke A, Walter J, Duenisch P, Kalff R, Ewald C (2013) Anterior cervical intercorporal fusion in patients with osteoporotic or tumorous fractures using a cement augmented cervical plate system: first results of a prospective single-center study. J Spinal Disord Tech 26(3):E112–E117

    Article  PubMed  Google Scholar 

  11. Yukawa Y, Kato F, Ito K, Nakashima H, Machino M (2009) Anterior cervical pedicle screw and plate fixation using fluoroscope-assisted pedicle axis view imaging: a preliminary report of a new cervical reconstruction technique. Eur Spine J 18(6):911–916

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aramomi M, Masaki Y, Koshizuka S, Kadota R, Okawa A et al (2008) Anterior pedicle screw fixation for multilevel cervical corpectomy and spinal fusion. Acta Neurochir (Wien) 150(6):575–582 discussion 582

    Article  CAS  Google Scholar 

  13. Masala S, Anselmetti GC, Muto M, Mammucari M, Volpi T, Simonetti G (2011) Percutaneous vertebroplasty relieves pain in metastatic cervical fractures. Clin Orthop Relat Res 469(3):715–722

    Article  CAS  PubMed  Google Scholar 

  14. Guo WH, Meng MB, You X, Luo Y, Li J et al (2012) CT-guided percutaneous vertebroplasty of the upper cervical spine via a translateral approach. Pain Phys 15(5):E733–E741

    Google Scholar 

  15. Dorman JK (2010) Vertebroplasty of the C2 vertebral body and dens using an anterior cervical approach: technical case report. Neurosurgery 67(4):E1143–E1146 discussion E1146

    Article  PubMed  Google Scholar 

  16. Lehman RA, Kang DG, Wagner SC (2015) Management of osteoporosis in spine surgery. J Am Acad Orthop Surg 23(4):253–263

    Article  PubMed  Google Scholar 

  17. McKoy BE, An YH (2000) An injectable cementing screw for fixation in osteoporotic bone. J Biomed Mater Res 53(3):216–220

    Article  CAS  PubMed  Google Scholar 

  18. Becker S, Chavanne A, Spitaler R, Kropik K, Aigner N et al (2008) Assessment of different screw augmentation techniques and screw designs in osteoporotic spines. Eur Spine J 17(11):1462–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Piñera AR, Duran C, Lopez B, Saez I, Correia E, Alvarez L (2011) Instrumented lumbar arthrodesis in elderly patients: prospective study using cannulated cemented pedicle screw instrumentation. Eur Spine J 20(Suppl 3):408–414

    Article  PubMed  PubMed Central  Google Scholar 

  20. Aydogan M, Ozturk C, Karatoprak O, Tezer M, Aksu N, Hamzaoglu A (2009) The pedicle screw fixation with vertebroplasty augmentation in the surgical treatment of the severe osteoporotic spines. J Spinal Disord Tech 22(6):444–447

    Article  PubMed  Google Scholar 

  21. Chang MC, Liu CL, Chen TH (2008) Polymethylmethacrylate augmentation of pedicle screw for osteoporotic spinal surgery: a novel technique. Spine (Phila Pa 1976) 33(10):E317–E324

    Article  Google Scholar 

  22. Mobbs RJ, Park A, Maharaj M, Phan K (2015) Outcomes of percutaneous pedicle screw fixation for spinal trauma and tumours. J Clin Neurosci 23:88–94

    Article  PubMed  Google Scholar 

  23. Chen LH, Tai CL, Lee DM, Lai PL, Lee YC et al (2011) Pullout strength of pedicle screws with cement augmentation in severe osteoporosis: a comparative study between cannulated screws with cement injection and solid screws with cement pre-filling. BMC Musculoskelet Disord 12:33

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen LH, Tai CL, Lai PL, Lee DM, Tsai TT et al (2009) Pullout strength for cannulated pedicle screws with bone cement augmentation in severely osteoporotic bone: influences of radial hole and pilot hole tapping. Clin Biomech (Bristol, Avon) 24(8):613–618

    Article  Google Scholar 

  25. Bullmann V, Liljenqvist UR, Rödl R, Schulte TL (2010) Pedicle screw augmentation from a biomechanical perspective. Orthopade 39(7):673–678

    Article  CAS  PubMed  Google Scholar 

  26. Burval DJ, McLain RF, Milks R, Inceoglu S (2007) Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: Biomechanical analysis of pedicle fixation strength. Spine (Phila Pa 1976) 32(10):1077–1083

    Article  Google Scholar 

  27. Elder BD, Lo SF, Holmes C, Goodwin CR, Kosztowski TA et al (2015) The biomechanics of pedicle screw augmentation with cement. Spine J 15(6):1432–1445

    Article  PubMed  Google Scholar 

  28. Bostelmann R, Keiler A, Steiger HJ, Scholz A, Cornelius JF, Schmoelz W (2015) Effect of augmentation techniques on the failure of pedicle screws under cranio-caudal cyclic loading. Eur Spine J:1–8. doi:10.1007/s00586-015-3904-3

  29. McHanwell S, Brenner E, Chirculescu AR, Drukker J, van Mameren H et al (2008) The legal and ethical framework governing body donation in Europe—a review of current practice and recommendations for good practice. Eur J Anat 12(1):1–24

    Google Scholar 

  30. Panjabi MM, Krag M, Summers D, Videman T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3(3):292–300

    Article  CAS  PubMed  Google Scholar 

  31. Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 251(1):15–19

    Article  CAS  PubMed  Google Scholar 

  32. Jo JY, Kang SH, Park SW (2012) Modified polymethylmethacrylate cervical plate and screw augmentation technique for intraoperative screw loosening. J Spinal Disord Tech 25(4):235–239

    Article  PubMed  Google Scholar 

  33. Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wilke HJ, Mehnert U, Claes LE, Bierschneider MM, Jaksche H, Boszczyk BM (2006) Biomechanical evaluation of vertebroplasty and kyphoplasty with polymethyl methacrylate or calcium phosphate cement under cyclic loading. Spine (Phila Pa 1976) 31(25):2934–2941

    Article  Google Scholar 

  35. Moussazadeh N, Rubin DG, McLaughlin L, Lis E, Bilsky MH, Laufer I (2015) Short-segment percutaneous pedicle screw fixation with cement augmentation for tumor-induced spinal instability. Spine J 15(7):1609–1617

    Article  PubMed  Google Scholar 

  36. Sarzier JS, Evans AJ, Cahill DW (2002) Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg 96(3 Suppl):309–312

    PubMed  Google Scholar 

  37. Frankel BM, D’Agostino S, Wang C (2007) A biomechanical cadaveric analysis of polymethylmethacrylate-augmented pedicle screw fixation. J Neurosurg Spine 7(1):47–53

    Article  PubMed  Google Scholar 

  38. Yi S, Rim DC, Park SW, Murovic JA, Lim J, Park J (2015) Biomechanical comparisons of pull out strengths after pedicle screw augmentation with hydroxyapatite, calcium phosphate, or polymethylmethacrylate in the cadaveric spine. World Neurosurg 83(6):976–981

    Article  PubMed  Google Scholar 

  39. Sawakami K, Yamazaki A, Ishikawa S, Ito T, Watanabe K, Endo N (2012) Polymethylmethacrylate augmentation of pedicle screws increases the initial fixation in osteoporotic spine patients. J Spinal Disord Tech 25(2):E28–E35

    Article  PubMed  Google Scholar 

  40. Bullmann V, Schmoelz W, Richter M, Grathwohl C, Schulte TL (2010) Revision of cannulated and perforated cement-augmented pedicle screws: a biomechanical study in human cadavers. Spine (Phila Pa 1976) 35(19):E932–E939

    Article  Google Scholar 

  41. Rüger M, Schmoelz W (2009) Vertebroplasty with high-viscosity polymethylmethacrylate cement facilitates vertebral body restoration in vitro. Spine (Phila Pa 1976) 34(24):2619–2625

    Article  Google Scholar 

  42. Georgy BA (2010) Clinical experience with high-viscosity cements for percutaneous vertebral body augmentation: occurrence, degree, and location of cement leakage compared with kyphoplasty. AJNR Am J Neuroradiol 31(3):504–508

    Article  CAS  PubMed  Google Scholar 

  43. Rapan S, Jovanović S, Gulan G, Boschi V, Kolarević V, Dapić T (2010) Vertebroplasty—high viscosity cement versus low viscosity cement. Coll Antropol 34(3):1063–1067

    CAS  PubMed  Google Scholar 

  44. Lador R, Liberman S, Ben-Galim P, Dreiangel N, Reitman CA, Hipp JA (2013) A cadaver study to compare vertebral augmentation with a high-viscosity cement to augmentation with conventional lower-viscosity cement. J Spinal Disord Tech 26(2):68–73

    Article  PubMed  Google Scholar 

  45. Loeffel M, Ferguson SJ, Nolte LP, Kowal JH (2008) Vertebroplasty: Experimental characterization of polymethylmethacrylate bone cement spreading as a function of viscosity, bone porosity, and flow rate. Spine (Phila Pa 1976) 33(12):1352–1359

    Article  Google Scholar 

  46. Wang L, Yang H, Shi Y, Luo Z, Jiang W et al (2012) Sandwich vertebral fracture in the study of adjacent-level fracture after vertebral cement augmentation. Orthopedics 35(8):e1225–e1230

    Article  PubMed  Google Scholar 

  47. Mont’Alverne F, Vallée JN, Guillevin R, Cormier E, Jean B et al (2009) Percutaneous vertebroplasty for multiple myeloma of the cervical spine. Neuroradiology 51(4):237–242

    Article  PubMed  Google Scholar 

  48. Guarnieri G, Vassallo P, Ambrosanio G, Zeccolini F, Lavanga A et al (2010) Vertebroplasty as a treatment for primary benign or metastatic cervical spine lesions: up to 1 year of follow-up. Neuroradiol J 23(1):90–94

    Article  CAS  PubMed  Google Scholar 

  49. Pitzen T, Franta F, Barbier D, Steudel WI (2004) Insertion torque and pullout force of rescue screws for anterior cervical plate fixation in a fatigued initial pilot hole. J Neurosurg Spine 1(2):198–201

    Article  PubMed  Google Scholar 

  50. Pitzen TR, Drumm J, Bruchmann B, Barbier DD, Steudel WI (2006) Effectiveness of cemented rescue screws for anterior cervical plate fixation. J Neurosurg Spine 4(1):60–63

    Article  PubMed  Google Scholar 

  51. Conrad BP, Cordista AG, Horodyski M, Rechtine GR (2005) Biomechanical evaluation of the pullout strength of cervical screws. J Spinal Disord Tech 18(6):506–510

    Article  PubMed  Google Scholar 

  52. Hitchon PW, Brenton MD, Coppes JK, From AM, Torner JC (2003) Factors affecting the pullout strength of self-drilling and self-tapping anterior cervical screws. Spine (Phila Pa 1976) 28(1):9–13

    Article  Google Scholar 

  53. Reitman CA, Nguyen L, Fogel GR (2004) Biomechanical evaluation of relationship of screw pullout strength, insertional torque, and bone mineral density in the cervical spine. J Spinal Disord Tech 17(4):306–311

    Article  PubMed  Google Scholar 

  54. Pitzen T, Barbier D, Tintinger F, Steudel WI, Strowitzki M (2002) Screw fixation to the posterior cortical shell does not influence peak torque and pullout in anterior cervical plating. Eur Spine J 11(5):494–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the MFF (Medizinischer Forschungsfonds Tirol). All the implants were provided free of charge by Depuy Synthes. None of the authors has any conflicts of interest in connection with the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Hartmann.

Ethics declarations

Conflict of interest

None of the authors has any potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, S., Thomé, C., Tschugg, A. et al. Cement-augmented screws in a cervical two-level corpectomy with anterior titanium mesh cage reconstruction: a biomechanical study. Eur Spine J 26, 1047–1057 (2017). https://doi.org/10.1007/s00586-017-4951-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-017-4951-8

Keywords

Navigation