Skip to main content

Advertisement

Log in

Reoperation within 2 years after lumbar interbody fusion: a multicenter study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Posterior lumbar interbody fusion (PLIF)/transforaminal lumbar interbody fusion (TLIF) can have complications that require reoperation. The goal of the study was to identify risk factors for reoperation within 2 years after PLIF/TLIF.

Methods

A retrospective analysis of a prospective multicenter database was performed for patients who underwent PLIF/TLIF. A total of 1363 patients (689 males and 674 females) were identified, with an average age of 65.9 years old. Comorbidities, perioperative ASA grade, and operative factors were compared between patients with and without reoperation. Risk factors for reoperation were identified in multivariate logistic analysis.

Results

There were 38 reoperations within 2 years after PLIF/TLIF (2.8%). The original surgical procedures were open PLIF (n = 26), open TLIF (n = 10), and minimally invasive surgery (n = 2). Reoperation was due to adjacent segment degeneration (ASD) (n = 10), surgical site infection (SSI) (n = 9), screw misplacement (n = 6), postoperative epidural hematoma (n = 6), pseudoarthrosis (n = 4), and cage protrusion (n = 3). Number of levels fused and dural tear were significantly associated with reoperation. In analysis of complications requiring reoperation, SSI was related to diabetes mellitus and dural tear, and postoperative epidural hematoma was related to fusion of two or more levels, EBL, and operation time. In multivariate logistic regression, fusion of two or more levels (HR 2.19) was significantly associated with reoperation.

Conclusion

Surgical invasiveness, as reflected by number of fused levels, operation time, EBL and dural tear, was associated with reoperation. Fusion of two or more levels is a strong risk factor for reoperation within 2 years after initial PLIF/TLIF.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Briggs H, Milligan PR (1944) Chip fusion of the low back following exploration of the spinal canal. J Bone Jt Surg Am 1944 26:125–130

    Google Scholar 

  2. Harms J, Rolinger H (1982) A one-stage procedure in operative treatment of spondylolistheses: dorsal traction-reposition and anterior fusion. Z Orthop Ihre Grenzgeb (1982) 120:343–347

    Article  CAS  Google Scholar 

  3. Eck JC, Hodges S, Humphreys SC (2007) Minimally invasive lumbar spinal fusion. J Am Acad Orthop Surg 15:321–329

    Article  PubMed  Google Scholar 

  4. Mobbs RJ, Sivabalan P, Li J (2012) Minimally invasive surgery compared to open spinal fusion for the treatment of degenerative lumbar spine pathologies. J Clin Neurosci 19:829–835

    Article  PubMed  Google Scholar 

  5. Mobbs RJ, Phan K, Malham G et al (2015) Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg 1:2–18

    PubMed  PubMed Central  Google Scholar 

  6. Dhall SS, Wang MY, Mummaneni PV (2008) Clinical and radiographic comparison of mini-open transforaminal lumbar interbody fusion with open transforaminal lumbar interbody fusion in 42 patients with long-term follow-up. J Neurosurg Spine 9:560–565

    Article  PubMed  Google Scholar 

  7. Deyo RA, Ciol MA, Cherkin DC et al (1993) Lumbar spinal fusion. A cohort study of complications, reoperations, and resource use in the Medicare population. Spine 18:1463–1470

    Article  PubMed  CAS  Google Scholar 

  8. Resnick DK, Choudhri TF, Dailey AT et al (2005) Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 7: intractable low-back pain without stenosis or spondylolisthesis. J Neurosurg Spine 2:670–672

    Article  PubMed  Google Scholar 

  9. Carreon LY, Puno RM, Dimar JR II et al (2003) Perioperative complications of posterior lumbar decompression and arthrodesis in older adults. J Bone Jt Surg Am 85-A:2089–2092

    Article  Google Scholar 

  10. Thomsen K, Christensen FB, Eiskjaer SP et al (1997) 1997 Volvo Award winner in clinical studies. The effect of pedicle screw instrumentation on functional outcome and fusion rates in posterolateral lumbar spinal fusion: a prospective, randomized clinical study. Spine 22:2813–2822

    Article  PubMed  CAS  Google Scholar 

  11. Hee HT, Castro FP Jr, Majd ME et al (2001) Anterior/posterior lumbar fusion versus transforaminal lumbar interbody fusion: analysis of complications and predictive factors. J Spinal Disord 14:533–540

    Article  PubMed  CAS  Google Scholar 

  12. Greiner-Perth R, Boehm H, Allam Y et al (2004) Reoperation rate after instrumented posterior lumbar interbody fusion: a report on 1680 cases. Spine 29:2516–2520

    Article  PubMed  Google Scholar 

  13. Imagama S, Kawakami N, Matsubara Y et al (2016) Radiographic adjacent segment degeneration at 5 years after L4/5 posterior lumbar interbody fusion with pedicle screw instrumentation: evaluation by computed tomography and annual screening with magnetic resonance imaging. Clin Spine Surg 29:E442–E451

    Article  PubMed  Google Scholar 

  14. Nakashima H, Kawakami N, Tsuji T et al (2015) Adjacent segment disease after posterior lumbar interbody fusion: based on cases with a minimum of 10 years of follow-up. Spine 40:E831–E841

    Article  PubMed  Google Scholar 

  15. Imagama S, Kawakami N, Tsuji T et al (2011) Perioperative complications and adverse events after lumbar spinal surgery: evaluation of 1012 operations at a single center. J Orthop Sci 16:510–515

    Article  PubMed  Google Scholar 

  16. Martin BI, Deyo RA, Mirza SK et al (2008) Expenditures and health status among adults with back and neck problems. JAMA 299:656–664

    Article  PubMed  CAS  Google Scholar 

  17. Cho KJ, Suk SI, Park SR et al (2007) Complications in posterior fusion and instrumentation for degenerative lumbar scoliosis. Spine 32:2232–2237

    Article  PubMed  Google Scholar 

  18. Kobayashi K, Imagama S, Ando K et al (2017) Complications associated with spine surgery in patients aged 80 years or older: Japan Association of Spine Surgeons with Ambition (JASA) multicenter study. Glob Spine J 7:636–641

    Article  Google Scholar 

  19. Kobayashi K, Imagama S, Ando K et al (2017) Risk factors for delirium after spine surgery in extremely elderly patients aged 80 years or older and review of the literature: Japan Association of Spine Surgeons with Ambition (JASA) multicenter study. Glob Spine J 7:560–566

    Article  Google Scholar 

  20. Kobayashi K, Imagama S, Sato K et al (2017) Postoperative complications associated with spine surgery in patients over 90 years old: a multicenter retrospective study. Glob Spine J (in press)

  21. Park P, Garton HJ, Gala VC et al (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine 29:1938–1944

    Article  PubMed  Google Scholar 

  22. Sasso RC, Garrido BJ (2008) Postoperative spinal wound infections. J Am Acad Orthop Surg 16:330–337

    Article  PubMed  Google Scholar 

  23. Thalgott JS, Cotler HB, Sasso RC et al (1991) Postoperative infections in spinal implants. Classification and analysis: a multicenter study. Spine 16:981–984

    Article  PubMed  CAS  Google Scholar 

  24. Weinstein MA, McCabe JP, Cammisa FP Jr (2000) Postoperative spinal wound infection: a review of 2,391 consecutive index procedures. J Spinal Disord 13:422–426

    Article  PubMed  CAS  Google Scholar 

  25. Imagama S, Kawakami N, Matsubara Y et al (2009) Preventive effect of artificial ligamentous stabilization on the upper adjacent segment impairment following posterior lumbar interbody fusion. Spine 34:2775–2781

    Article  PubMed  Google Scholar 

  26. Lu K, Liliang PC, Wang HK et al (2015) Reduction in adjacent-segment degeneration after multilevel posterior lumbar interbody fusion with proximal DIAM implantation. J Neurosurg Spine 23:190–196

    Article  PubMed  Google Scholar 

  27. Meyerding HW (1956) Spondylolisthesis; surgical fusion of lumbosacral portion of spinal column and interarticular facets; use of autogenous bone grafts for relief of disabling backache. J Int Coll Surg 26(5 Part 1):566–591

    PubMed  CAS  Google Scholar 

  28. Gertzbein SD, Betz R, Clements D et al (1996) Semirigid instrumentation in the management of lumbar spinal conditions combined with circumferential fusion. A multicenter study. Spine 21:1918–1925

    Article  PubMed  CAS  Google Scholar 

  29. Pfirrmann CW, Metzdorf A, Zanetti M et al (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26:1873–1878

    Article  PubMed  CAS  Google Scholar 

  30. Brantigan JW (1994) Pseudoarthrosis rate after allograft posterior lumbar interbody fusion with pedicle screw and plate fixation. Spine 19:1271–1279

    Article  PubMed  CAS  Google Scholar 

  31. Jin-Tao Q, Yu T, Mei W et al (2015) Comparison of MIS vs. open PLIF/TLIF with regard to clinical improvement, fusion rate, and incidence of major complication: a meta-analysis. Eur Spine J 24:1058–1065

    Article  PubMed  Google Scholar 

  32. Lau D, Lee JG, Han SJ et al (2011) Complications and perioperative factors associated with learning the technique of minimally invasive transforaminal lumbar interbody fusion (TLIF). J Clin Neurosci 18:624–627

    Article  PubMed  Google Scholar 

  33. Park Y, Ha JW (2007) Comparison of one-level posterior lumbar interbody fusion performed with a minimally invasive approach or a traditional open approach. Spine 32:537–543

    Article  PubMed  Google Scholar 

  34. Villavicencio AT, Burneikiene S, Roeca CM et al (2010) Minimally invasive versus open transforaminal lumbar interbody fusion. Surg Neurol Int 1:12

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lawson EH, Hall BL, Ko CY (2013) Risk factors for superficial vs deep/organ-space surgical site infections: implications for quality improvement initiatives. JAMA Surg 148:849–858

    Article  PubMed  Google Scholar 

  36. Satake K, Kanemura T, Matsumoto A et al (2013) Predisposing factors for surgical site infection of spinal instrumentation surgery for diabetes patients. Eur Spine J 22:1854–1858

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim JY, Ryu DS, Paik HK et al (2016) Paraspinal muscle, facet joint, and disc problems: risk factors for adjacent segment degeneration after lumbar fusion. Spine J 16:867–875

    Article  PubMed  Google Scholar 

  38. Miura Y, Imagama S, Yoda M et al (2003) Is local bone viable as a source of bone graft in posterior lumbar interbody fusion? Spine 28:2386–2389

    Article  PubMed  Google Scholar 

  39. Ito Z, Matsuyama Y, Sakai Y et al (2010) Bone union rate with autologous iliac bone versus local bone graft in posterior lumbar interbody fusion. Spine 35:E1101–E1105

    Article  PubMed  Google Scholar 

  40. Kanemura T, Matsumoto A, Ishikawa Y et al (2014) Radiographic changes in patients with pseudarthrosis after posterior lumbar interbody arthrodesis using carbon interbody cages: a prospective five-year study. J Bone Jt Surg Am 96:e82

    Article  Google Scholar 

  41. Eismont FJ, Wiesel SW, Rothman RH (1981) Treatment of dural tears associated with spinal surgery. J Bone Jt Surg Am 63:1132–1136

    Article  CAS  Google Scholar 

  42. Mayfield FH (1980) Autologous fat transplants for the protection and repair of the spinal dura. Clin Neurosurg 27:349–361

    Article  PubMed  CAS  Google Scholar 

  43. Epstein NE (2014) Hemostasis and other benefits of fibrin sealants/glues in spine surgery beyond cerebrospinal fluid leak repairs. Surg Neurol Int 5:S304–S314

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kobayashi K, Ando K, Ito K et al (2017) Efficacy of intraoperative lumbar subarachnoid drainage for prevention of cerebrospinal fluid leak after spinal cord tumor resection. J Orthop Sci. https://doi.org/10.1016/j.jos.2017.10.007

  45. Maruenda JI, Barrios C, Garibo F et al (2016) Adjacent segment degeneration and revision surgery after circumferential lumbar fusion: outcomes throughout 15 years of follow-up. Eur Spine J 25:1550–1557

    Article  PubMed  Google Scholar 

Download references

Funding

Funding was from institutional sources only.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiro Imagama.

Ethics declarations

Conflict of interest

None of the authors have a conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 660 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, K., Ando, K., Kato, F. et al. Reoperation within 2 years after lumbar interbody fusion: a multicenter study. Eur Spine J 27, 1972–1980 (2018). https://doi.org/10.1007/s00586-018-5508-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-018-5508-1

Keywords

Navigation