Skip to main content
Log in

Spinal motion preservation surgery: indications and applications

  • General Review • SPINE - MOTION
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Fusion is one of the most commonly performed spinal procedures, indicated for a wide range of spinal problems. Elimination of motion though results in accelerated degeneration of the adjacent level, known as adjacent level disease. Motion preservation surgical methods were developed in order to overcome this complication. These methods include total disc replacement, laminoplasty, interspinous implants and dynamic posterior stabilization systems. The initial enthusiasm about these methods was followed by certain concerns about their clinical usefulness and their results. The main indications for total disc replacement are degenerative disc disease, but the numerous contraindications for this method make it difficult to find the right candidate. Application of interspinous implants has shown good results in patients with spinal stenosis, but a more precise definition is needed regarding the severity of spinal stenosis up to which these implants can be used. Laminoplasty has several advantages and less complications compared to fusion and laminectomy in patients with cervical myelopathy/radiculopathy. Dynamic posterior stabilization could replace conventional fusion in certain cases, but also in this case the results are successful only in mild to moderate cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zweig T, Aghayev E, Melloh M, Dietrich D, Röder C (2011) Influence of preoperative leg pain and radiculopathy on outcomes in mono-segmental lumbar total disc replacement: results from a nationwide registry. Eur Spine J 21(S6):729–736. doi:10.1007/s00586-011-1863-x

    Article  PubMed Central  Google Scholar 

  2. Buttner-Janz K, Guyer R, Ohnmeiss D (2014) Indications for lumbar total disc replacement: selecting the right patient with the right indication for the right total disc. IJSS 8:12. doi:10.14444/1012

    Article  Google Scholar 

  3. Meir A, Freeman B, Fraser R, Fowler S (2013) Ten-year survival and clinical outcome of the AcroFlex lumbar disc replacement for the treatment of symptomatic disc degeneration. Spine J 13(1):13–21. doi:10.1016/j.spinee.2012.12.008

    Article  PubMed  Google Scholar 

  4. Balsano M, Zachos A, Ruggiu A, Barca F, Tranquilli-Leali P, Doria C (2011) Nucleus disc arthroplasty with the NUBAC™ device: 2-year clinical experience. Eur Spine J 20(S1):36–40. doi:10.1007/s00586-011-1752-

    Article  PubMed Central  Google Scholar 

  5. Petilon J, Roth J, Hardenbrook M (2011) Results of lumbar total disc arthroplasty in military personnel. J Spinal Disord Tech 24(5):297–301. doi:10.1097/bsd.0b013e3181fb3e2a

    Article  PubMed  Google Scholar 

  6. Patel A, Brodke D, Pimenta L et al (2008) Revision strategies in lumbar total disc arthroplasty. Spine 33(11):1276–1283. doi:10.1097/brs.0b013e3181714a1d

    Article  PubMed  Google Scholar 

  7. Chin K (2007) Epidemiology of indications and contraindications to total disc replacement in an academic practice. Spine J 7(4):392–398. doi:10.1016/j.spinee.2006.08.009

    Article  PubMed  Google Scholar 

  8. Siepe C, Mayer H, Heinz-Leisenheimer M, Korge A (2007) Total lumbar disc replacement. Spine 32(7):782–790. doi:10.1097/01.brs.0000259071.64027.04

    Article  PubMed  Google Scholar 

  9. David T (2007) Long-term results of one-level lumbar arthroplasty. Spine 32(6):661–666. doi:10.1097/01.brs.0000257554.67505.45

    Article  PubMed  Google Scholar 

  10. Holt R, Majd M, Isaza J et al (2007) Complications of lumbar artificial disc replacement compared to fusion: results from the prospective, randomized, multicenter US Food and Drug Administration Investigational Device Exemption Study of the Charité artificial disc. SAS J 1(1):20–27. doi:10.1016/s1935-9810(07)70043-9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pimenta L, Díaz R, Guerrero L (2006) Charité lumbar artificial disc retrieval: use of a lateral minimally invasive technique. J Neurosurg 5(6):556–561. doi:10.3171/spi.2006.5.6.556

    Google Scholar 

  12. Regan J, McAfee P, Blumenthal S et al (2006) Evaluation of surgical volume and the early experience with lumbar total disc replacement as part of the investigational device exemption study of the Charite artificial disc. Spine 31(19):2270–2276. doi:10.1097/01.brs.0000234726.55383.0c

    Article  PubMed  Google Scholar 

  13. Siepe C, Mayer H, Wiechert K, Korge A (2006) Clinical results of total lumbar disc replacement with ProDisc II. Spine 31(17):1923–1932. doi:10.1097/01.brs.0000228780.06569.e8

    Article  PubMed  Google Scholar 

  14. Diwan A, Kulkarni A (2005) Prosthetic Lumbar disc replacement for degenerative disc disease. Neurol India 53(4):499. doi:10.4103/0028-3886.22620

    Article  PubMed  Google Scholar 

  15. Auerbach J, Jones K, Fras C, Balderston J, Rushton S, Chin K (2008) The prevalence of indications and contraindications to cervical total disc replacement. Spine J 8(5):711–716. doi:10.1016/j.spinee.2007.06.018

    Article  PubMed  Google Scholar 

  16. Uschold T, Fusco D, Germain R, Tumialan L, Chang S (2011) Cervical and lumbar spinal arthroplasty: clinical review. AJNR 33(9):1631–1641. doi:10.3174/ajnr.a2758

    Article  PubMed  Google Scholar 

  17. Sekhon L, Ball J (2005) Artificial cervical disc replacement: principles, types and techniques. Neurol India 53(4):445. doi:10.4103/0028-3886.22611

    Article  CAS  PubMed  Google Scholar 

  18. Wenger M, Markwalder TM (2010) Bryan total disc arthroplasty: a replacement disc for cervical disc disease. Med Dev 3:11–24. doi:10.2147/mder.s7605

    Google Scholar 

  19. Pimenta L, McAfee P, Cappuccino A, Cunningham B, Diaz R, Coutinho E (2007) Superiority of multilevel cervical arthroplasty outcomes versus single-level outcomes. Spine 32(12):1337–1344. doi:10.1097/brs.0b013e318059af12

    Article  PubMed  Google Scholar 

  20. Shin D, Yi S, Yoon D, Kim K, Shin H (2009) Artificial disc replacement combined with fusion versus two-level fusion in cervical two-level disc disease. Spine 34(11):1153–1159. doi:10.1097/brs.0b013e31819c9d39

    Article  PubMed  Google Scholar 

  21. Bertagnoli R, Duggal N, Pickett G et al (2005) Cervical total disc replacement, part two: clinical results. Orthop Clin North Am 36(3):355–362. doi:10.1016/j.ocl.2005.02.009

    Article  PubMed  Google Scholar 

  22. Bono C, Kadaba M, Vaccaro A (2009) Posterior pedicle fixation-based dynamic stabilization devices for the treatment of degenerative diseases of the lumbar spine. J Spinal Disord Tech 22(5):376–383. doi:10.1097/bsd.0b013e31817c6489

    Article  PubMed  Google Scholar 

  23. Prud’homme M, Barrios C, Rouch P, Charles Y, Steib J, Skalli W (2015) Clinical outcomes and complications after pedicle-anchored dynamic or hybrid lumbar spine stabilization. J Spinal Disord Tech 28(8):E439–E448. doi:10.1097/bsd.0000000000000092

    Article  PubMed  Google Scholar 

  24. Yu S, Yen C, Wu C, Kao F, Kao Y, Tu Y (2012) Radiographic and clinical results of posterior dynamic stabilization for the treatment of multisegment degenerative disc disease with a minimum follow-up of 3 years. Arch Orthop Trauma Surg 132(5):583–589. doi:10.1007/s00402-012-1460-4

    Article  PubMed  Google Scholar 

  25. Schwarzenbach O, Berlemann U, Stoll T, Dubois G (2005) Posterior dynamic stabilization systems: DYNESYS. Orthop Clin North Am 36(3):363–372. doi:10.1016/j.ocl.2005.03.001

    Article  PubMed  Google Scholar 

  26. Kurtz S, Lanman T, Higgs G et al (2013) Retrieval analysis of PEEK rods for posterior fusion and motion preservation. Eur Spine J 22(12):2752–2759. doi:10.1007/s00586-013-2920-4

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lo T, Salerno S, Colohan A (2010) Interlaminar spacer: a review of its mechanism, application, and efficacy. World Neurosurg 74(6):617–626. doi:10.1016/j.wneu.2010.05.038

    Article  PubMed  Google Scholar 

  28. Landi A (2014) Interspinous posterior devices: What is the real surgical indication? World J of Clin Cases 2(9):402. doi:10.12998/wjcc.v2.i9.402

    Article  Google Scholar 

  29. Fabrizi A, Maina R, Schiabello L (2011) Interspinous spacers in the treatment of degenerative lumbar spinal disease: our experience with DIAM and Aperius devices. Eur Spine J 20(S1):20–26. doi:10.1007/s00586-011-1753-2

    Article  PubMed Central  Google Scholar 

  30. Selbeck M, Koy T, Röllinghoff M et al (2014) Indications and contraindications: interspinous process decompression devices in lumbar spine surgery. J Neurol Surg Part A Cent Eur Neurosurg 76(01):1–7. doi:10.1055/s-0034-1382779

    Article  Google Scholar 

  31. Bonaldi G, Brembilla C, Cianfoni A (2015) Minimally-invasive posterior lumbar stabilization for degenerative low back pain and sciatica. A review. Eur J Radiol 84(5):789–798. doi:10.1016/j.ejrad.2014.04.012

    Article  CAS  PubMed  Google Scholar 

  32. Lee C, Hyun S, Kim K, Jahng T, Yoon S, Kim H (2013) The efficacy of lumbar hybrid stabilization using the DIAM™ to delay adjacent segment degeneration. Oper Neurosurg 73:224–231. doi:10.1227/01.neu.0000430331.71257.61

    Article  Google Scholar 

  33. Deyo R, Martin B, Ching A et al (2013) Interspinous spacers compared with decompression or fusion for lumbar stenosis. Spine 38(10):865–872. doi:10.1097/brs.0b013e31828631b8

    Article  PubMed  Google Scholar 

  34. Maida G, Marcati E, Sarubbo S (2012) Heterotopic ossification in vertebral interlaminar/interspinous instrumentation: report of a case. Case Rep Surg. doi:10.1155/2012/970642

    PubMed  PubMed Central  Google Scholar 

  35. Borg A, Nurboja B, Timothy J, Choi D (2012) Interspinous distractor devices for the management of lumbar spinal stenosis: a miracle cure for a common problem? Br J Neurosurg 26(4):445–449. doi:10.3109/02688697.2012.680630

    Article  PubMed  Google Scholar 

  36. Alfieri A, Gazzeri R, Prell J et al (2012) Role of lumbar interspinous distraction on the neural elements. Neurosurg Rev 35(4):477–484. doi:10.1007/s10143-012-0394-1

    Article  PubMed  Google Scholar 

  37. Postacchini R, Ferrari E, Cinotti G, Menchetti P, Postacchini F (2011) Aperius interspinous implant versus open surgical decompression in lumbar spinal stenosis. Spine J 11(10):933–939. doi:10.1016/j.spinee.2011.08.419

    Article  PubMed  Google Scholar 

  38. Tamburrelli F, Proietti L, Logroscino C (2011) Critical analysis of lumbar interspinous devices failures: a retrospective study. Eur Spine J 20(S1):27–35. doi:10.1007/s00586-011-1763-0

    Article  PubMed Central  Google Scholar 

  39. Tuschel A, Chavanne A, Eder C, Meissl M, Becker P, Ogon M (2013) Implant survival analysis and failure modes of the X-stop interspinous distraction device. Spine 38(21):1826–1831. doi:10.1097/brs.0b013e31820b86e1

    Article  PubMed  Google Scholar 

  40. Menchetti P, Postacchini F, Bini W, Canero G (2011) Percutaneous surgical treatment in lumbar spinal stenosis with Aperius-PercLID: indications, surgical technique and results. Acta Neurochir Suppl 108:183–186

    Article  CAS  PubMed  Google Scholar 

  41. Kabir S, Gupta S, Casey A (2010) Lumbar interspinous spacers. Spine 35(25):E1499–E1506. doi:10.1097/brs.0b013e3181e9af93

    Article  PubMed  Google Scholar 

  42. Richter A, Schütz C, Hauck M, Halm H (2009) Does an interspinous device (Coflex™) improve the outcome of decompressive surgery in lumbar spinal stenosis? One-year follow up of a prospective case control study of 60 patients. Eur Spine J 19(2):283–289. doi:10.1007/s00586-009-1229-9

    Article  PubMed  PubMed Central  Google Scholar 

  43. Barbagallo G, Olindo G, Corbino L, Albanese V (2009) Analysis of complications in patients treated with the X-STOP interspinous process decompression system. Neurosurgery 65(1):111–120. doi:10.1227/01.neu.0000346254.07116.31

    Article  PubMed  Google Scholar 

  44. Errico T, Kamerlink J, Quirno M, Samani J, Chomiak R (2009) Survivorship of Coflex Interlaminar-Interspinous Implant. SAS J 3(2):59–67. doi:10.1016/s1935-9810(09)70008-8

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lauryssen C (2007) Appropriate selection of patients with lumbar spinal stenosis for interspinous process decompression with the X STOP device. Neurosurg Focus 22(1):1–7. doi:10.3171/foc.2007.22.1.5

    Article  Google Scholar 

  46. Floman Y, Millgram M, Smorgick Y, Rand N, Ashkenazi E (2007) Failure of the Wallis interspinous implant to lower the incidence of recurrent lumbar disc herniations in patients undergoing primary disc excision. J Spinal Disord Tech 20(5):337–341. doi:10.1097/bsd.0b013e318030a81d

    Article  PubMed  Google Scholar 

  47. Bono C, Vaccaro A (2007) Interspinous process devices in the lumbar spine. Contemp Spine Surg 8(9):1–7. doi:10.1097/01.css.0000285189.75055.51

    Article  Google Scholar 

  48. Chiu JC (2006) Interspinous process decompression (IPD) system (X-STOP) for the treatment of lumbar spinal stenosis. Surg Tech Int 15:265–275

    Google Scholar 

  49. Xu C, Ni W, Tian N, Hu X, Li F, Xu H (2013) Complications in degenerative lumbar disease treated with a dynamic interspinous spacer (Coflex). Int Orthop (SICOT) 37(11):2199–2204. doi:10.1007/s00264-013-2006-2

    Article  Google Scholar 

  50. König S, Spetzger U (2014) Modified open-door laminoplasty for the surgical treatment of cervical spondylotic myelopathy in elderly patients. Acta Neurochirg 156(6):1225–1230. doi:10.1007/s00701-014-2078-9

    Article  Google Scholar 

  51. Sah S, Wang L, Dahal M, Acharya P, Dwivedi R (2012) Surgical management of cervical spondylotic myelopathy. J Nep Med Assoc 52(188):172–177

    CAS  Google Scholar 

  52. Chen Y, Wang X, Chen D, Miao J, Liao X, Yu F (2014) Posterior hybrid technique for ossification of the posterior longitudinal ligament associated with segmental instability in the cervical spine. J Spinal Disord Tech 27(4):240–244. doi:10.1097/bsd.0b013e31825c6e2f

    Article  PubMed  Google Scholar 

  53. Mitsunaga L, Klineberg E, Gupta M (2012) Laminoplasty techniques for the treatment of multilevel cervical stenosis. Adv Orthop. doi:10.1155/2012/307916

    PubMed  PubMed Central  Google Scholar 

  54. Neo M, Fujibayashi S, Takemoto M, Nakamura T (2011) Clinical results of and patient satisfaction with cervical laminoplasty for considerable cord compression with only slight myelopathy. Eur Spine J 21(2):340–346. doi:10.1007/s00586-011-2050-9

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hirabayashi S, Yamada H, Motosuneya T et al (2010) Comparison of enlargement of the spinal canal after cervical laminoplasty: open-door type and double-door type. Eur Spine J 19(10):1690–1694. doi:10.1007/s00586-010-1369-y

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yanase M, Matsuyama Y, Mori K et al (2010) Intraoperative spinal cord monitoring of C5 palsy after cervical laminoplasty. J Spinal Disord Tech 23(3):170–175. doi:10.1097/bsd.0b013e31819e91b4

    Article  PubMed  Google Scholar 

  57. Pang CH, Leung HB, Yen CH (2009) Laminoplasty after anterior spinal fusion for cervical spondylotic myelopathy. J Orthop Surg 17(3):269–274

    Article  Google Scholar 

  58. Vitarbo E, Sheth R, Levi A (2007) Open-door expansile cervical laminoplasty. Neurosurgery 60(SUPPLEMENT 1):154–159. doi:10.1227/01.neu.0000215353.94448.16

    Google Scholar 

  59. Takeuchi K, Yokoyama T, Aburakawa S et al (2006) Postoperative changes at the lower end of cervical laminoplasty. J Spinal Disord Tech 19(6):402–406. doi:10.1097/00024720-200608000-00005

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios V. Papadopoulos.

Ethics declarations

Conflict of interest

Ioannis D. Gelalis, Dimitrios V. Papadopoulos, Dionysios K. Giannoulis, Andreas G. Tsantes, Anastasios V. Korompilias declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelalis, I.D., Papadopoulos, D.V., Giannoulis, D.K. et al. Spinal motion preservation surgery: indications and applications. Eur J Orthop Surg Traumatol 28, 335–342 (2018). https://doi.org/10.1007/s00590-017-2052-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-017-2052-3

Keywords

Navigation