Skip to main content

Advertisement

Log in

Measurements in cervical vertebrae CT of pediatric cases: normal values

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

This study aims to determine the normal limits of atlanto-dental interval (ADI), basion-dens interval (BDI), basion-cartilaginous dens interval (BCDI), and prevertebral soft tissue thickness (PVSTT) according to age groups for normal pediatric cases.

Materials and methods

CT images of 256 pediatric patients aged between 1 and 15 years were retrospectively evaluated. ADI, BDI, BCDI and PVSTT measurements were performed.

Results

Upper normal limit (UNL) values for ADI were 2.65–4.8 mm. UNL values for PVSTT were found to be 6.9 mm at C1 level, 6.7 mm at C2 level, 9.3 mm at C3 level, 14.2 mm at C4 level, 14.1 mm at C5 level, 13.8 mm at C6 level and 12.8 mm at C7 level. The maximum value of BDI in the group with non-ossified os terminale was 12 mm, and in the group with ossified os terminale it was 10 mm. The UNL of BCDI determined for females was 5.1 mm, while the UNL for males was 5.6 mm.

Conclusion

We propose the obtained values as the UNL values for ADI, BDI, BCDI and PVSTT on CT images in the pediatric population from 1 to 15 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dietrich AM, Ginn-Pease ME, Bartkowski HM, King DR. Pediatric cervical spine fractures: predominantly subtle presentation. J Pediatr Surg. 1991;26:995–9.

    Article  PubMed  CAS  Google Scholar 

  2. Kokoska ER, Keller MS, Rallo MC, Weber TR. Characteristics of pediatric cervical spine injuries. J Pediatr Surg. 2001;36:100–5.

    Article  PubMed  CAS  Google Scholar 

  3. Goldstein HE, Anderson RCE. Classification and Management of pediatric craniocervical injuries. Neurosurg Clin N Am. 2017;28:73–90.

    Article  PubMed  Google Scholar 

  4. Junewick JJ. Pediatric craniocervical junction injuries. AJR. 2011;196:1003–10.

    Article  PubMed  Google Scholar 

  5. Singh AK, Fulton Z, Tiwari R, Zhang X, Lu L, Altmeyer WB, et al. Basion-cartilaginous dens interval: an imaging parameter for craniovertebral junction assessment in children. AJNR. 2017;38:2380–4.

    Article  PubMed  CAS  Google Scholar 

  6. Patel JC, Tepas JJ 3rd, Mollitt DL, Pieper P. Pediatric cervical spine injuries: defining the disease. J Pediatr Surg. 2001;36:373–6.

    Article  PubMed  CAS  Google Scholar 

  7. Anderson RC, Scaife ER, Fenton SJ, Kan P, Hansen KW, Brockmeyer DL. Cervical spine clearance after trauma in children. J Neurosurg. 2006;105:361–4.

    Article  PubMed  Google Scholar 

  8. Vermess D, Rojas CA, Shaheen F, Roy P, Martinez CR. Normal pediatric prevertebral soft-tissue thickness on MDCT. AJR. 2012;199:130–3.

    Article  Google Scholar 

  9. Bertozzi JC, Rojas CA, Martinez CR. Evaluation of the pediatric craniocervical junction on MDCT. AJR. 2009;192:26–31.

    Article  PubMed  Google Scholar 

  10. Harris J Jr. The cervicocranium: its radiographic assessment. Radiology. 2001;218:337–51.

    Article  PubMed  Google Scholar 

  11. Rojas CA, Vermess D, Bertozzi JC, Whitlow J, Guidi C, Martinez CR. Normal thickness and appearance of the prevertebral soft tissues on multidetector CT. AJNR. 2009;30:136–41.

    Article  PubMed  CAS  Google Scholar 

  12. Platzer P, Jaindl M, Thalhammer G, Dittrich S, Wieland T, Vecsei V, et al. Clearing the cervical spine in critically injured patients: a comprehensive C-spine protocol to avoid unnecessary delays in diagnosis. Eur Spine J. 2006;15:1801–10.

    Article  PubMed  Google Scholar 

  13. Wholey MH, Bruwer AJ, Baker HL Jr. The lateral roentgenogram of the neck: with comments on the atlanto-odontoid-basion relationship. Radiology. 1958;71:350–6.

    Article  PubMed  CAS  Google Scholar 

  14. Diaz JJ, Aulino JM, Collier B, Roman C, May AK, Miller RS, Guillamondegui O, et al. The early work-up for isolated ligamentous injury of the cervical spine: does computed tomography scan have a role? J Trauma. 2005;59:897–903.

    Article  PubMed  Google Scholar 

  15. Omercikoglu S, Altunbas E, Akoglu H, Onur O, Denizbasi A. Normal values of cervical vertebral measurements according to age and sex in CT. Am J Emerg Med. 2017;35:383–90.

    Article  PubMed  Google Scholar 

  16. Bagley LJ. Imaging of spinal trauma. Radiol Clin North Am. 2006;44:1–12.

    Article  PubMed  Google Scholar 

  17. Fayad LM, Corl F, Fishman EK. Pediatric skeletal trauma: use of multiplanar reformatted and three-dimensional 64-row multidetector CT in the emergency department. RadioGraphics. 2009;29:135–50.

    Article  PubMed  Google Scholar 

  18. Lustrin ES, Karakas SP, Ortiz AO, Cinnamon J, Castillo M, Vaheesan K, et al. Pediatric cervical spine: normal anatomy, variants, and trauma. RadioGraphics. 2003;23:539–60.

    Article  PubMed  Google Scholar 

  19. Keenan HT, Hollingshead MC, Chung CJ, Ziglar MK. Using CT of the cervical spine for early evaluation of pediatric patients with head trauma. AJR. 2001;177:1405–9.

    Article  PubMed  CAS  Google Scholar 

  20. Goradia D, Linnau KF, Cohen WA, Mirza S, Hallam DK, Blackmore CC. Correlation of MR imaging findings with intraoperative findings after cervical spine trauma. AJNR. 2007;28:209–15.

    PubMed  CAS  Google Scholar 

  21. Parizel PM, van der Zijden T, Gaudino S, Spaepen M, Voormolen MHJ, Venstermans C, et al. Trauma of the spine and spinal cord: imaging strategies. Eur Spine J. 2010;19:8–17.

    Article  Google Scholar 

  22. Radcliff KE, Ben-Galim P, Dreiangel N, Martin SB, Reitman CA, Lin JN, et al. Comprehensive computed tomography assessment of the upper cervical anatomy: what is normal? Spine J. 2010;10:219–29.

    Article  PubMed  Google Scholar 

  23. Rampersaud RY, Fehlings MG, Harrop JS, Kuklo T, Massicotte E, Salonen D, et al. Validation of digital radiology measurement tools for quantitative spinal imaging. Top Spinal Cord Inj Rehabil. 2006;12:11–21.

    Article  Google Scholar 

  24. Stevens PM. Radiographic distortion of bones: a marker study. Orthopedics. 1989;12:1457–63.

    PubMed  CAS  Google Scholar 

  25. Templeton PA, Young JW, Mirvis SE, Buddemeyer EU. The value of retropharyngeal soft tissue measurements in trauma of the adult cervical spine: cervical spine soft tissue measurements. Skeletal Radiol. 1987;16:98–104.

    Article  PubMed  CAS  Google Scholar 

  26. Ravi B, Rampersaud R. Clinical magnification error in lateral spinal digital radiographs. Spine. 2008;33:311–6.

    Article  Google Scholar 

  27. Locke GR, Gardner JI, Van Epps EF. Atlas-dens interval (atlantodental interval) in children: a survey based on 200 normal cervical spines. Am J Roentgenol Radium Ther Nucl Med. 1966;97:135–40.

    Article  PubMed  CAS  Google Scholar 

  28. Brockmeyer DL, Ragel BT, Kestle JR. The pediatric cervical spine instability study. A pilot study assessing the prognostic value of four imaging modalities in clearing the cervical spine for children with severe traumatic injuries. Childs Nerv Syst. 2012;28:699–705.

    Article  PubMed  Google Scholar 

  29. Rojas CA, Bertozzi JC, Martinez CR, Whitlow J. Reassessment of the craniocervical junction: normal values on CT. AJNR. 2007;28:1819–23.

    Article  PubMed  CAS  Google Scholar 

  30. Hankinson TC, Anderson RC. Craniovertebral junction abnormalities in down syndrome. Neurosurgery. 2010;66:32–8.

    Article  PubMed  Google Scholar 

  31. Brockmeyer D. Down syndrome and craniovertebral instability. Topic review and treatment recommendations. Pediatr Neurosurg. 1999;31:71–7.

    Article  PubMed  CAS  Google Scholar 

  32. Harris JH Jr, Carson GC, Wagner LK. Radiologic diagnosis of traumatic occipitovertebral dissociation, 1: normal occipitovertebral relationships on lateral radiographs of supine subjects. AJR. 1994;162:881–6.

    Article  PubMed  Google Scholar 

  33. Gonzalez LF, Fiorella D, Crawford NR, Wallace RC, Feiz-Erfan I, Drumm D, et al. Vertical atlantoaxial distraction injuries: radiological criteria and clinical implications. J Neurosurg Spine. 2004;1:273–80.

    Article  PubMed  Google Scholar 

  34. Bulas DI, Fitz CR, Johnson DL. Traumatic atlanto-occipital dislocation in children. Radiology. 1993;188:1555–8.

    Article  Google Scholar 

  35. Vachhrajani S, Sen AN, Satyan K, Kulkarni AV, Birchansky SB, Jea A. Estimation of normal computed tomography measurements for the upper cervical spine in the pediatric age group. J Neurosurg Pediatr. 2014;14:425–33.

    Article  PubMed  Google Scholar 

  36. Pang D, Nemzek WR, Zovickian J. Atlanto-occipital dislocation–part 2: the clinical use of (occipital) condyle-C1 interval, comparison with other diagnostic methods, and the manifestation, management, and outcome of atlanto-occipital dislocation in children. Neurosurgery. 2007;61:995–1015.

    Article  PubMed  Google Scholar 

  37. Mullin TI, Wang M, Rao RD. Radiographic characterization of prevertebral soft tissue shadow in the cervicothoracic region of normal adults. J Surg Res. 2013;180:73–9.

    Article  PubMed  Google Scholar 

  38. Ozturk I, Bulut S, Atalar MH, Salk I, Ozum U. Evaluation of the prevertebral soft tissue thickness by magnetic resonance imaging in patients with mild neck problem. Turk Neurosurg. 2013;23:758–63.

    PubMed  Google Scholar 

  39. Penning L. Prevertebral hematoma in cervical spine injury: incidence and etiologic significance. AJR. 1981;136:553–61.

    Article  PubMed  CAS  Google Scholar 

  40. Xue Z, Antani S, Long LR, Demner-Fushman D, Thoma GR. Window classification of brain CT images in biomedical articles. AMIA Annu Symp Proc. 2012;2012:1023–9.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeliz Akturk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to the publication of this article. This manuscript describes original work and is not under consideration by any other journal. All authors approved the manuscript and this submission. Necessary research ethics committee approvals were obtained. Measurements in Cervical Vertebrae CT of Pediatric Cases: Normal Values.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

A statement of informed consent was not applicable since the manuscript does not contain any patient’s data.

Additional information

The work originated in Health Sciences University Diskapi Yildirim Beyazit Research and Training Hospital, Sehit Omerhalisdemir Street, Diskapi, Ankara.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akturk, Y., Ozbal Gunes, S. Measurements in cervical vertebrae CT of pediatric cases: normal values. Jpn J Radiol 36, 500–510 (2018). https://doi.org/10.1007/s11604-018-0749-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-018-0749-9

Keywords

Navigation