Skip to main content

Advertisement

Log in

Neurological complications in adult spinal deformity surgery

  • Complications in Spine Surgery (E Klineberg, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

The number of surgeries performed for adult spinal deformity (ASD) has been increasing due to an aging population, longer life expectancy, and studies supporting an improvement in health-related quality of life scores after operative intervention. However, medical and surgical complication rates remain high, and neurological complications such as spinal cord injury and motor deficits can be especially debilitating to patients. Several independent factors potentially influence the likelihood of neurological complications including surgical approach (anterior, lateral, or posterior), use of osteotomies, thoracic hyperkyphosis, spinal region, patient characteristics, and revision surgery status. The majority of ASD surgeries are performed by a posterior approach to the thoracic and/or lumbar spine, but anterior and lateral approaches are commonly performed and are associated with unique neural complications such as femoral nerve palsy and lumbar plexus injuries. Spinal morphology, such as that of hyperkyphosis, has been reported to be a risk factor for complications in addition to three-column osteotomies, which are often utilized to correct large deformities. Additionally, revision surgeries are common in ASD and these patients are at an increased risk of procedure-related complications and nervous system injury. Patient selection, surgical technique, and use of intraoperative neuromonitoring may reduce the incidence of complications and optimize outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Smith JS, Shaffrey CI, Fu KM, et al. Clinical and radiographic evaluation of the adult spinal deformity patient. Neurosurg Clin N Am. 2013;24(2):143–56.

    Article  PubMed  Google Scholar 

  2. Schwab F, Dubey A, Gamez L, et al. Adult scoliosis: prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine (Phila Pa 1976). 2005;30(9):1082–5.

    Article  Google Scholar 

  3. Ailon T, Smith JS, Shaffrey CI, et al. Degenerative spinal deformity. Neurosurgery. 2015;77 Suppl 4:S75–91.

    Article  PubMed  Google Scholar 

  4. Smith JS, Shaffrey CI, Glassman SD, et al. Risk-benefit assessment of surgery for adult scoliosis: an analysis based on patient age. Spine (Phila Pa 1976). 2011;36(10):817–24.

    Article  Google Scholar 

  5. Glassman SD, Bridwell K, Dimar JR, et al. The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976). 2005;30(18):2024–9.

    Article  Google Scholar 

  6. Lafage V, Schwab F, Patel A, et al. Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine (Phila Pa 1976). 2009;34(17):E599–606.

    Article  Google Scholar 

  7. Schwab FJ, Blondel B, Bess S, et al. Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine (Phila Pa 1976). 2013;38(13):E803–12.

    Article  Google Scholar 

  8. Terran J, Schwab F, Shaffrey CI, et al. The SRS-Schwab adult spinal deformity classification: assessment and clinical correlations based on a prospective operative and nonoperative cohort. Neurosurgery. 2013;73(4):559–68.

    Article  PubMed  Google Scholar 

  9. Berjano P, Lamartina C. Classification of degenerative segment disease in adults with deformity of the lumbar or thoracolumbar spine. Eur Spine J. 2014;23(9):1815–24.

    Article  PubMed  Google Scholar 

  10. Smith JS, Lafage V, Shaffrey CI, et al. Outcomes of operative and nonoperative treatment for adult spinal deformity: a prospective, multicenter, propensity-matched cohort assessment with minimum 2-year follow-up. Neurosurgery. 2015 Nov 16 [Epub ahead of print]

  11. Cho SK, Bridwell KH, Lenke LG, et al. Major complications in revision adult deformity surgery: risk factors and clinical outcomes with 2- to 7-year follow-up. Spine (Phila Pa 1976). 2012;37(6):489–500.

    Article  Google Scholar 

  12. DeWald CJ, Stanley T. Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Spine (Phila Pa 1976). 2006;31(19 Suppl):S144–51.

    Article  Google Scholar 

  13. Emami A, Deviren V, Berven S, et al. Outcome and complications of long fusions to the sacrum in adult spine deformity: luque-galveston, combined iliac and sacral screws, and sacral fixation. Spine (Phila Pa 1976). 2002;27(7):776–86.

    Article  Google Scholar 

  14. Lapp MA, Bridwell KH, Lenke LG, et al. Long-term complications in adult spinal deformity patients having combined surgery a comparison of primary to revision patients. Spine (Phila Pa 1976). 2001;26(8):973–83.

    Article  CAS  Google Scholar 

  15. Yadla S, Maltenfort MG, Ratliff JK, et al. Adult scoliosis surgery outcomes: a systematic review. Neurosurg Focus. 2010;28(3):E3.

    Article  PubMed  Google Scholar 

  16. Carreon LY, Puno RM, Dimar 2nd JR, et al. Perioperative complications of posterior lumbar decompression and arthrodesis in older adults. J Bone Joint Surg Am. 2003;85-A(11):2089–92.

    PubMed  Google Scholar 

  17. Auerbach JD, Lenke LG, Bridwell KH, et al. Major complications and comparison between 3-column osteotomy techniques in 105 consecutive spinal deformity procedures. Spine (Phila Pa 1976). 2012;37(14):1198–210.

    Article  Google Scholar 

  18. Sansur CA, Smith JS, Coe JD, et al. Scoliosis research society morbidity and mortality of adult scoliosis surgery. Spine (Phila Pa 1976). 2011;36(9):E593–7.

    Article  Google Scholar 

  19. Bianco K, Norton R, Schwab F, et al. Complications and intercenter variability of three-column osteotomies for spinal deformity surgery: a retrospective review of 423 patients. Neurosurg Focus. 2014;36(5):E18.

    Article  PubMed  Google Scholar 

  20. Daubs MD, Lenke LG, Cheh G, et al. Adult spinal deformity surgery: complications and outcomes in patients over age 60. Spine (Phila Pa 1976). 2007;32(20):2238–44.

    Article  Google Scholar 

  21. Diebo BG, Passias PG, Marascalchi BJ, et al. Primary versus revision surgery in the setting of adult spinal deformity: a nationwide study on 10,912 patients. Spine (Phila Pa 1976). 2015;40(21):1674–80. The most up-to-date and largest prospective study comparing primary versus revision surgery in patients with adult spinal deformity.

    Article  Google Scholar 

  22. Smith JS, Shaffrey CI, Sansur CA, et al. Rates of infection after spine surgery based on 108,419 procedures: a report from the Scoliosis Research Society Morbidity and Mortality Committee. Spine(Phila PA 1976). 2011;36(7):556–63.

    Article  Google Scholar 

  23. Smith JS, Sansur CA, Donaldson 3rd WF, et al. Short-term morbidity and mortality associated with correction of thoracolumbar fixed sagittal plane deformity: a report from the Scoliosis Research Society Morbidity and Mortality Committee. Spine (Phila Pa 1976). 2011;36(12):958–64.

    Article  Google Scholar 

  24. Hamilton DK, Smith JS, Sansur CA, et al. Rates of new neurological deficit associated with spine surgery based on 108,419 procedures: a report of the scoliosis research society morbidity and mortality committee. Spine (Phila Pa 1976). 2011;36(15):1218–28.

    Article  Google Scholar 

  25. Hassanzadeh H, Jain A, El Dafrawy MH, et al. Clinical results and functional outcomes of primary and revision spinal deformity surgery in adults. J Bone Joint Surg Am. 2013;95(15):1413–9.

    Article  PubMed  Google Scholar 

  26. Cecchinato R, Langella F, Bassani R, et al. Variations of cervical lordosis and head alignment after pedicle subtraction osteotomy surgery for sagittal imbalance. Eur Spine J. 2014;23 Suppl 6:644–9.

    Article  PubMed  Google Scholar 

  27. Smith JS, Ramchandran S, Lafage V, et al. Prospective multicenter assessment of early complication rates associated with adult cervical deformity surgery in 78 patients. Neurosurgery. 2015 Nov 19 [Epub ahead of print]. There is a paucity of literature on the complications of adult cervical deformity surgery. This prospective, multicenter study focuses on early complication rates associated with cervical spinal deformity and is useful for the perioperative counselling of patients

  28. He B, Yan L, Xu Z, et al. The causes and treatment strategies for the postoperative complications of occipitocervical fusion: a 316 cases retrospective analysis. Eur Spine J. 2014;23(8):1720–4.

    Article  PubMed  Google Scholar 

  29. Durga P, Sahu BP. Neurological deterioration during intubation in cervical spine disorders. Indian J Anaesth. 2014;58(6):684–92.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lall R, Patel NJ, Resnick DK. A review of complications associated with craniocervical fusion surgery. Neurosurgery. 2010;67(5):1396–402.

    Article  PubMed  Google Scholar 

  31. Wright NM, Lauryssen C. Vertebral artery injury in C1-2 transarticular screw fixation: results of a survey of the AANS/CNS section on disorders of the spine and peripheral nerves. J Neurosurg. 1998;88(4):634–40.

    Article  CAS  PubMed  Google Scholar 

  32. Jung A, Schramm J. How to reduce recurrent laryngeal nerve palsy in anterior cervical spine surgery: a prospective observational study. Neurosurgery. 2010;67(1):10–5.

    Article  PubMed  Google Scholar 

  33. Yasuda T, Togawa D, Hasegawa T, et al. Hypoglossal nerve palsy as a complication of an anterior approach for cervical spine surgery. Asian Spine J. 2015;9(2):295–8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Civelek E, Karasu A, Cansever T, et al. Surgical anatomy of the cervical sympathetic trunk during anterolateral approach to cervical spine. Eur Spine J. 2008;17(8):991–5.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Munting E, Roder C, Sobottke R, et al. Patient outcomes after laminotomy, hemilaminectomy, laminectomy and laminectomy with instrumented fusion for spinal canal stenosis: a propensity score-based study from the Spine Tango registry. Eur Spine J. 2015;24(2):358–68.

    Article  PubMed  Google Scholar 

  36. Hassanzadeh H, Jain A, El Dafrawy MH, et al. Three-column osteotomies in the treatment of spinal deformity in adult patients 60 years old and older: outcome and complications. Spine (Phila Pa 1976). 2013;38(9):726–31.

  37. Kim SS, Cho BC, Kim JH, et al. Complications of posterior vertebral resection for spinal deformity. Asian Spine J. 2012;6(4):257–65.

    Article  PubMed  PubMed Central  Google Scholar 

  38. La Maida GA, Luceri F, Gallozzi F, et al. Complication rate in adult deformity surgical treatment: safety of the posterior osteotomies. Eur Spine J. 2015;24 Suppl 7:879–86.

    Article  PubMed  Google Scholar 

  39. Suk SI, Kim JH, Kim WJ, et al. Posterior vertebral column resection for severe spinal deformities. Spine (Phila Pa 1976). 2002;27(21):2374–82.

    Article  Google Scholar 

  40. Howe CR, Agel J, Lee MJ, et al. The morbidity and mortality of fusions from the thoracic spine to the pelvis in the adult population. Spine (Phila Pa 1976). 2011;36(17):1397–401.

    Article  Google Scholar 

  41. Ghobrial GM, Williams Jr KA, Arnold P, et al. Iatrogenic neurologic deficit after lumbar spine surgery: a review. Clin Neurol Neurosurg. 2015;139:76–80.

    Article  PubMed  Google Scholar 

  42. Dede O, Ward WT, Bosch P, et al. Using the freehand pedicle screw placement technique in adolescent idiopathic scoliosis surgery: what is the incidence of neurological symptoms secondary to misplaced screws? Spine (Phila Pa 1976). 2014;39(4):286–90.

    Article  Google Scholar 

  43. Schwab F, Blondel B, Chay E, et al. The comprehensive anatomical spinal osteotomy classification. Neurosurgery. 2014;74(1):112–20.

    Article  PubMed  Google Scholar 

  44. Perez-Grueso FS, Cecchinato R, Berjano P. Ponte osteotomies in thoracic deformities. Eur Spine J. 2015;24 Suppl 1:S38–41.

    Article  PubMed  Google Scholar 

  45. Pellise F, Vila-Casademunt A. Posterior thoracic osteotomies. Eur J Orthop Surg Traumatol. 2014;24 Suppl 1:S39–48.

    Article  PubMed  Google Scholar 

  46. Kelly MP, Lenke LG, Shaffrey CI, et al. Evaluation of complications and neurological deficits with three-column spine reconstructions for complex spinal deformity: a retrospective Scoli-RISK-1 study. Neurosurg Focus. 2014;36(5):E17. Multicenter study of 207 prospectively collected adult spinal deformity patients. This study did not find a higher rate of neural complications in those undergoing three-column osteotomies compared to those who did not, which is in contrast to several previous retrospective studies.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Papadopoulos EC, Boachie-Adjei O, Hess WF, et al. Early outcomes and complications of posterior vertebral column resection. Spine J. 2015;15(5):983–91.

    Article  PubMed  Google Scholar 

  48. Lee SS, Lenke LG, Kuklo TR, et al. Comparison of Scheuermann kyphosis correction by posterior-only thoracic pedicle screw fixation versus combined anterior/posterior fusion. Spine (Phila Pa 1976). 2006;31(20):2316–21.

    Article  Google Scholar 

  49. Acosta FL, Liu J, Slimack N, et al. Changes in coronal and sagittal plane alignment following minimally invasive direct lateral interbody fusion for the treatment of degenerative lumbar disease in adults: a radiographic study. J Neurosurg Spine. 2011;15(1):92–6.

    Article  PubMed  Google Scholar 

  50. Lykissas MG, Aichmair A, Hughes AP, et al. Nerve injury after lateral lumbar interbody fusion: a review of 919 treated levels with identification of risk factors. Spine J. 2014;14(5):749–58. The largest series to evaluate neurological complications after LLIF in patients with deformity or degenerative conditions. This study has the longest follow-up of patients with neural deficits after LLIF, demonstrated that most neurological injuries improve over time, and provided a risk factor analysis.

    Article  PubMed  Google Scholar 

  51. Duggal N, Mendiondo I, Pares HR, et al. Anterior lumbar interbody fusion for treatment of failed back surgery syndrome: an outcome analysis. Neurosurgery. 2004;54(3):636–43.

    Article  PubMed  Google Scholar 

  52. Sofianos DA, Briseno MR, Abrams J, et al. Complications of the lateral transpsoas approach for lumbar interbody arthrodesis: a case series and literature review. Clin Orthop Relat Res. 2012;470(6):1621–32.

    Article  PubMed  Google Scholar 

  53. Le TV, Burkett CJ, Deukmedjian AR, et al. Postoperative lumbar plexus injury after lumbar retroperitoneal transpsoas minimally invasive lateral interbody fusion. Spine (Phila Pa 1976). 2013;38(1):E13–20.

    Article  Google Scholar 

  54. Lee YP, Regev GJ, Chan J, et al. Evaluation of hip flexion strength following lateral lumbar interbody fusion. Spine J. 2013;13(10):1259–62.

    Article  PubMed  Google Scholar 

  55. Tormenti MJ, Maserati MB, Bonfield CM, et al. Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus. 2010;28(3):E7.

    Article  PubMed  Google Scholar 

  56. Pumberger M, Hughes AP, Huang RR, et al. Neurologic deficit following lateral lumbar interbody fusion. Eur Spine J. 2012;21(6):1192–9.

    Article  PubMed  Google Scholar 

  57. Davis TT, Bae HW, Mok JM, et al. Lumbar plexus anatomy within the psoas muscle: implications for the transpsoas lateral approach to the L4-L5 disc. J Bone Joint Surg Am. 2011;93(16):1482–7.

    Article  PubMed  Google Scholar 

  58. Wang S, Aikenmu K, Zhang J, et al. The aim of this retrospective study is to evaluate the efficacy and safety of posterior-only vertebral column resection (PVCR) for the treatment of angular and isolated congenital kyphosis. Eur Spine J. 2015;11 [Epub ahead of print].

  59. Modi HN, Suh SW, Hong JY, et al. The effects of spinal cord injury induced by shortening on motor evoked potentials and spinal cord blood flow: an experimental study in swine. J Bone Joint Surg Am. 2011;93(19):1781–9.

    Article  PubMed  Google Scholar 

  60. Hsu LC, Cheng CL, Leong JC. Pott's paraplegia of late onset. The cause of compression and results after anterior decompression. J Bone Joint Surg (Br). 1988;70(4):534–8.

    CAS  Google Scholar 

  61. Zhang Z, Wang H, Liu C. Compressive myelopathy in severe angular kyphosis: a series of ten patients. Eur Spine J. 2015;7 [Epub ahead of print].

  62. Lenke LG, Fehlings MG, Shaffrey CI, et al. Neurologic outcomes of complex adult spinal deformity surgery: results of the prospective, multicenter Scoli-RISK-1 study. Spine (Phila Pa 1976). 2016;41(3):204–12. Prospective, multicenter study of 256 adult spinal deformity patients with ≥80° of coronal and/or sagittal deformity. This study reported the highest rate of new lower extremity motor weakness and likely reflects the true incidence of neural injury secondary to complex deformity surgery. The Scoli-RISK-1 study utilized a standardized outcome measure for lower extremity motor weakness and is the only prospective study to quantify neural function both pre- and postoperatively.

    Article  Google Scholar 

  63. Qiu Y, Wang S, Wang B, et al. Incidence and risk factors of neurological deficits of surgical correction for scoliosis: analysis of 1373 cases at one Chinese institution. Spine (Phila Pa 1976). 2008;33(5):519–26.

    Article  Google Scholar 

  64. Suk SI, Chung ER, Kim JH, et al. Posterior vertebral column resection for severe rigid scoliosis. Spine (Phila Pa 1976). 2005;30(14):1682–7.

    Article  Google Scholar 

  65. Lu GH, Wang XB, Wang B, et al. [Complications of one stage posterior vertebral column resection for the treatment of severe rigid spinal deformities]. Zhonghua Wai Ke Za Zhi. 2010;48(22):1709–13.

    PubMed  Google Scholar 

  66. Ahn UM, Ahn NU, Buchowski JM, et al. Functional outcome and radiographic correction after spinal osteotomy. Spine (Phila Pa 1976). 2002;27(12):1303–11.

    Article  Google Scholar 

  67. Bridwell KH, Lewis SJ, Edwards C, et al. Complications and outcomes of pedicle subtraction osteotomies for fixed sagittal imbalance. Spine (Phila Pa 1976). 2003;28(18):2093–101.

    Article  Google Scholar 

  68. Bridwell KH, Lewis SJ, Lenke LG, et al. Pedicle subtraction osteotomy for the treatment of fixed sagittal imbalance. J Bone Joint Surg Am. 2003;85-A(3):454–63.

    PubMed  Google Scholar 

  69. Yang BP, Ondra SL, Chen LA, et al. Clinical and radiographic outcomes of thoracic and lumbar pedicle subtraction osteotomy for fixed sagittal imbalance. J Neurosurg Spine (Phila PA 1976). 2006;5(1):9–17.

    Article  Google Scholar 

  70. Buchowski JM, Bridwell KH, Lenke LG, et al. Neurologic complications of lumbar pedicle subtraction osteotomy: a 10-year assessment. Spine (Phila Pa 1976). 2007;32(20):2245–52.

    Article  Google Scholar 

  71. Heth JA, Hitchon PW, Goel VK, et al. A biomechanical comparison between anterior and transverse interbody fusion cages. Spine (Phila Pa 1976). 2001;26(12):E261–7.

    Article  CAS  Google Scholar 

  72. Kwon B, Kim DH. Lateral lumbar interbody fusion: indications, outcomes, and complications. J Am Acad Orthop Surg. 2016;24(2):96–105.

    Article  PubMed  Google Scholar 

  73. Czerwein Jr JK, Thakur N, Migliori SJ, et al. Complications of anterior lumbar surgery. J Am Acad Orthop Surg. 2011;19(5):251–8.

    Article  PubMed  Google Scholar 

  74. Shimode M, Kojima T, Sowa K. Spinal wedge osteotomy by a single posterior approach for correction of severe and rigid kyphosis or kyphoscoliosis. Spine (Phila Pa 1976). 2002;27(20):2260–7.

    Article  Google Scholar 

  75. Hamzaoglu A, Alanay A, Ozturk C, et al. Posterior vertebral column resection in severe spinal deformities: a total of 102 cases. Spine (Phila Pa 1976). 2011;36(5):E340–4.

    Article  Google Scholar 

  76. Devlin VJ, Schwartz DM. Intraoperative neurophysiologic monitoring during spinal surgery. J Am Acad Orthop Surg. 2007;15(9):549–60.

    Article  PubMed  Google Scholar 

  77. Schwartz DM, Auerbach JD, Dormans JP, et al. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Am Acad Orthop Surg. 2007;89(11):2440–9.

    Google Scholar 

  78. Rao RD, Gourab K, David KS. Operative treatment of cervical spondylotic myelopathy. J Bone Joint Surg Am. 2006;88(7):1619–40.

    Article  PubMed  Google Scholar 

  79. Ziewacz JE, Berven SH, Mummaneni VP, et al. The design, development, and implementation of a checklist for intraoperative neuromonitoring changes. Neurosurg Focus. 2012;33(5):E11.

    Article  PubMed  Google Scholar 

  80. Halpin RJ, Sugrue PA, Gould RW, et al. Standardizing care for high-risk patients in spine surgery: the Northwestern high-risk spine protocol. Spine (Phila Pa 1976). 2010;35(25):2232–8.

    Article  Google Scholar 

  81. Uribe JS, Isaacs RE, Youssef JA, et al. Can triggered electromyography monitoring throughout retraction predict postoperative symptomatic neuropraxia after XLIF? Results from a prospective multicenter trial. Eur Spine J. 2015;24 Suppl 3:378–85.

    Article  PubMed  Google Scholar 

  82. Block J, Silverstein JW, Ball HT, et al. Motor evoked potentials for femoral nerve protection in transpsoas lateral access surgery of the spine. Neurodiagn J. 2015;55(1):36–45.

    Article  PubMed  Google Scholar 

  83. Chaudhary K, Speights K, McGuire K, et al. Trans-cranial motor evoked potential detection of femoral nerve injury in trans-psoas lateral lumbar interbody fusion. J Clin Monit Comput. 2015;29(5):549–54.

    Article  PubMed  Google Scholar 

  84. Leppanen RE. Intraoperative monitoring of segmental spinal nerve root function with free-run and electrically-triggered electromyography and spinal cord function with reflexes and F-responses. A position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput. 2005;19(6):437–61.

    Article  PubMed  Google Scholar 

  85. Macdonald DB, Stigsby B, Al Homoud I, et al. Utility of motor evoked potentials for intraoperative nerve root monitoring. J Clin Neurophysiol. 2012;29(2):118–25.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

None.

Funding

No funding was received in support of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin A. Iorio.

Ethics declarations

Conflict of interest

Justin Iorio and Patrick Reid declare that they have no conflicts of interest. Han Jo Kim is a consultant for K2M and Zimmer Biomet.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Complications in Spine Surgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iorio, J.A., Reid, P. & Kim, H.J. Neurological complications in adult spinal deformity surgery. Curr Rev Musculoskelet Med 9, 290–298 (2016). https://doi.org/10.1007/s12178-016-9350-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-016-9350-y

Keywords

Navigation