Skip to main content
Log in

Interspinous implants: are the new implants better than the last generation? A review

  • Motion Preserving Spine Surgery (C Kepler, section editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Interspinous process devices (IPDs) are used in the surgical treatment of lumbar spinal stenosis. The purpose of this review is to compare the first generation with the next-generation devices in terms of complications, device failure, reoperation rates, symptom relief, and outcome.

Recent findings

Thirty-seven studies were included from 2011 to 2016. Device failure occurred at a mean of 3.7%, with a lower tendency to happen with next-generation IPDs. Reoperations occurred at a lower rate with the next-generation devices, with a mean follow up of 24 months (3.7% vs. 11.1%). The clinical outcome is not influenced by the type of IPD.

Summary

The long-term functionality of these devices is questionable, with radiologic changes and recurrence of symptoms often seen by 2 years following implantation. Next-generation devices do not appear to be subject to the same “bounce back” effect of symptom re-emergence after several years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Sapico FL, Montgomerie JZ. Pyogenic vertebral osteomyelitis: report of nine cases and review of the literature. Rev Infect Dis. 1979;1(5):754–76.

    Article  CAS  PubMed  Google Scholar 

  2. Ammendolia C, Stuber K, de Bruin LK, Furlan AD, Kennedy CA, Rampersaud YR, et al. Nonoperative treatment of lumbar spinal stenosis with neurogenic claudication: a systematic review. Spine. 2012;37(10):E609–16. doi:10.1097/BRS.0b013e318240d57d.

    Article  PubMed  Google Scholar 

  3. Chang Y, Singer DE, Wu YA, Keller RB, Atlas SJ. The effect of surgical and nonsurgical treatment on longitudinal outcomes of lumbar spinal stenosis over 10 years. J Am Geriatr Soc. 2005;53(5):785–92. doi:10.1111/j.1532-5415.2005.53254.x.

    Article  PubMed  Google Scholar 

  4. Atlas SJ, Keller RB, Robson D, Deyo RA, Singer DE. Surgical and nonsurgical management of lumbar spinal stenosis: four-year outcomes from the Maine lumbar spine study. Spine. 2000;25(5):556–62.

    Article  CAS  PubMed  Google Scholar 

  5. Weinstein JN, Tosteson TD, Lurie JD, Tosteson A, Blood E, Herkowitz H, et al. Surgical versus nonoperative treatment for lumbar spinal stenosis four-year results of the spine patient outcomes research trial. Spine. 2010;35(14):1329–38. doi:10.1097/BRS.0b013e3181e0f04d.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Malmivaara A, Slätis P, Heliövaara M, Sainio P, Kinnunen H, Kankare J, et al. Surgical or nonoperative treatment for lumbar spinal stenosis? A randomized controlled trial. Spine. 2007;32(1):1–8. doi:10.1097/01.brs.0000251014.81875.6d.

    Article  PubMed  Google Scholar 

  7. Gibson JNA, Waddell G. Surgery for degenerative lumbar spondylosis. Cochrane Database Syst Rev. 2005;19(4):CD001352. doi:10.1016/j.spinee.2015.01.003.

    Google Scholar 

  8. Puzzilli F, Gazzeri R, Galarza M, Neroni M, Panagiotopoulos K, Bolognini A, et al. Interspinous spacer decompression (X-STOP) for lumbar spinal stenosis and degenerative disk disease: a multicenter study with a minimum 3-year follow-up. Clin Neurol Neurosurg. 2014;124:166–74. doi:10.1016/j.clineuro.2014.07.004.

    Article  PubMed  Google Scholar 

  9. Huang W, Chang Z, Zhang J, Song R, Yu X. Interspinous process stabilization with rocker via unilateral approach versus X-Stop via bilateral approach for lumbar spinal stenosis: a comparative study. BMC Musculoskelet Disord. 16:328. doi:10.1186/s12891-015-0786-9.

  10. Lønne G, Johnsen LG, Rossvoll I, Andresen H, Storheim K, Zwart JA, et al. Minimally invasive decompression versus X-Stop in lumbar spinal stenosis: a randomized controlled multicenter study. Spine. 2015a;40(2):77–85. doi:10.1097/BRS.0000000000000691.

    Article  PubMed  Google Scholar 

  11. Verhoof OJ, Bron JL, Wapstra FH, et al. High failure rate of the interspinous distraction device (X-Stop) for the treatment of lumbar spinal stenosis caused by degenerative spondylolisthesis. Eur Spine J. 2008;17(2):188–92.

    Article  PubMed  Google Scholar 

  12. Daentzer D, Hurschler C, Seehaus F, Noll C, Schwarze M. Posterior dynamic stabilization in the lumbar spine—24 months results of a prospective clinical and radiological study with an interspinous distraction device. BMC Musculoskelet Disord. 2016;17:90. doi:10.1186/s12891-016-0945-7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Marsh GDJ, Mahir S, Leyte A. A prospective randomised controlled trial to assess the efficacy of dynamic stabilisation of the lumbar spine with the Wallis ligament. Eur Spine J. 2014;23(10):2156–60. doi:10.1007/s00586-014-3487-4.

    Article  PubMed  Google Scholar 

  14. Jiang Y, Che W, Wang H, Li R, Li X, Dong J. Minimum 5 year follow-up of multi-segmental lumbar degenerative disease treated with discectomy and the Wallis interspinous device. J Clin Neurosci. 2015;22(7):1144–9. doi:10.1016/j.jocn.2014.12.016.

    Article  PubMed  Google Scholar 

  15. Buric J, Pulidori M. Long-term reduction in pain and disability after surgery with the interspinous device for intervertebral assisted motion (DIAM) spinal stabilization system in patients with low back pain: 4-year follow-up from a longitudinal prospective case series. Eur Spine J. 2011;20(8):1304–11. doi:10.1007/s00586-011-1697-6.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lu K, Liliang P-C, Wang H-K, Liang C-L, Chen J-S, Chen T-B, et al. Reduction in adjacent-segment degeneration after multilevel posterior lumbar interbody fusion with proximal DIAM implantation. J Neurosurg Spine. 2015;23(2):190–6. doi:10.3171/2014.12.SPINE14666.

  17. Fabrizi AP, Maina R, Schiabello L. Interspinous spacers in the treatment of degenerative lumbar spinal disease: our experience with DIAM and aperius devices. Eur Spine J. 2011;20(Suppl 1):S20–6. doi:10.1007/s00586-011-1753-2.

    Article  PubMed  Google Scholar 

  18. Masala S, Marcia S, Taglieri A, Chiaravalloti A, Calabria E, Raguso M, et al. Degenerative lumbar spinal stenosis treatment with aperius™ PerCLID™ system and Falena® interspinous spacers: 1-year follow-up of clinical outcome and quality of life. Interv Neuroradiol. 2016;22(2):217–26. doi:10.1177/1591019915622163.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Beyer F, Yagdiran A, Neu P, Kaulhausen T, Eysel P, Sobottke R. Percutaneous interspinous spacer versus open decompression: a 2-year follow-up of clinical outcome and quality of life. Eur Spine J. 2013;22(9):2015–21. doi:10.1007/s00586-013-2790-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. • Bae HW, Lauryssen C, Maislin G, Leary S, Musacchio MJ. Therapeutic sustainability and durability of coflex interlaminar stabilization after decompression for lumbar spinal stenosis: a four year assessment. Int J Spine Surg. 2015;9:15. doi:10.14444/2015. Four-year RCT demonstrating the viability of the Coflex interlaminar device for the treatment of lumbar spinal stenosis.

    PubMed  PubMed Central  Google Scholar 

  21. Kumar N, Shah SM, Ng YH, Pannierselvam VK, DasDe S, Shen L. Role of coflex as an adjunct to decompression for symptomatic lumbar spinal stenosis. Asian Spine J. 2014;8(2):161. doi:10.4184/asj.2014.8.2.161.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee N, Shin DA, Kim KN, Yoon DH, Ha Y, Shin HC, et al. Paradoxical radiographic changes of coflex interspinous device with minimum 2-year follow-up in lumbar spinal stenosis. World Neurosurg. 2016;85:177–84. doi:10.1016/j.wneu.2015.08.069.

    Article  PubMed  Google Scholar 

  23. Patel VV, Whang PG, Haley TR, Bradley WD, Nunley PD, Davis RP, et al. Superion interspinous process spacer for intermittent neurogenic claudication secondary to moderate lumbar spinal stenosis: two-year results from a randomized controlled FDA-IDE pivotal trial. Spine. 2015a;40(5):275–82. doi:10.1097/BRS.0000000000000735.

    Article  PubMed  Google Scholar 

  24. • Patel VV, Nunley PD, Whang PG, Haley TR, Bradley WD, Davis RP, et al. Superion(®) InterSpinous spacer for treatment of moderate degenerative lumbar spinal stenosis: durable three-year results of a randomized controlled trial. J Pain Res. 2015b;8:657–62. doi:10.2147/JPR.S92633. A 3-year RCT demonstrating the Superion device to provide clinical improvement in patients with lumbar spinal stenosis.

    PubMed  PubMed Central  Google Scholar 

  25. Shabat S, Miller LE, Block JE, Gepstein R. Minimally invasive treatment of lumbar spinal stenosis with a novel interspinous spacer. Clin Interv Aging. 2011;6:227–33. doi:10.2147/CIA.S23656.

    PubMed  PubMed Central  Google Scholar 

  26. Alexandre A, Alexandre AM, De Pretto M, Coro L, Saggini R, et al. One-year follow-up of a series of 100 patients treated for lumbar spinal canal stenosis by means of HeliFix interspinous process decompression device, one-year follow-up of a series of 100 patients treated for lumbar spinal canal stenosis by means of HeliFix interspinous process decompression device. Biomed Res Int. 2014;2014:e176936. doi:10.1155/2014/176936.

    Article  Google Scholar 

  27. Yingsakmongkol W, Chaichankul C, Limthongkul W. Percutaneous interspinous distraction device for the treatment of lumbar spinal canal stenosis: clinical and radiographic results at 2-year follow-up. Int J Spine Surg. 2014;8:32. doi:10.14444/1032.

    Article  PubMed Central  Google Scholar 

  28. Wu AM, Zhou Y, Li QL, et al. Interspinous spacer versus traditional decompressive surgery for lumbar spinal stenosis: a systematic review and meta-analysis. PLoS One. 2014;9(5):e97142. doi:10.1371/journal.pone.0097142.

    Article  PubMed  PubMed Central  Google Scholar 

  29. • Patil CG, Sarmiento JM, Ugiliweneza B, Mukherjee D, Nuno M, Liu JC, et al. Interspinous device versus laminectomy for lumbar spinal stenosis: a comparative effectiveness study. Spine J. 2014;14(8):1484–92. doi:10.1016/j.spinee.2013.08.053. A retrospective comparative study analyzing complication rates, reoperation rates, and costs in patients receiving an IPD vs. laminectomy.

    Article  PubMed  Google Scholar 

  30. Postacchini R, Ferrari E, Cinotti G, Menchetti PPM, Postacchini F. Aperius interspinous implant versus open surgical decompression in lumbar spinal stenosis. Spine J. 2011;11(10):933–9. doi:10.1016/j.spinee.2011.08.419.

    Article  PubMed  Google Scholar 

  31. Meirhaeghe JV, Fransen P, Morelli D, Craig NJA, Godde G, Mihalyi A, et al. Clinical evaluation of the preliminary safety and effectiveness of a minimally invasive interspinous process device APERIUS®. Eur Spine J. 2012;21(12):2565–72. doi:10.1007/s00586-012-2330-z.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Surace MF, Fagetti A, Fozzato S, Cherubino P. Lumbar spinal stenosis treatment with aperius perclid interspinous system. Eur Spine J. 2012;21(1):69–74. doi:10.1007/s00586-012-2222-2.

    Article  PubMed Central  Google Scholar 

  33. Miller LE, Block JE. Interspinous spacer implant in patients with lumbar spinal stenosis: preliminary results of a multicenter, randomized, controlled trial. Pain Res Treat. 2012;2012:823509. doi:10.1155/2012/823509.

    PubMed  PubMed Central  Google Scholar 

  34. Heyrani N, Picinic Norheim E, Elaine Ku Y, Nick SA. Interspinous process implantation for the treatment of neurogenic intermittent claudication. Anesth Pain Med. 2012;2(1):36–41. doi:10.5812/aapm.5173.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kim H-Y, Choi B-W. Change of radiological parameters after interspinous implantation (X-stop®) in degenerative spinal stenosis. Eur J Orthop Surg Traumatol. 2012;23(3):281–5. doi:10.1007/s00590-012-0986-z.

    Article  PubMed  Google Scholar 

  36. Strömqvist BH, Berg S, Gerdhem P, Johnsson R, Möller A, Sahlstrand T, et al. X-Stop versus decompressive surgery for lumbar neurogenic intermittent claudication: randomized controlled trial with 2-year follow-up. Spine. 2013;38(17):1436–42. doi:10.1097/BRS.0b013e31828ba413. This study compared X-STOP with decompressive surgery and found a greater need for reoperation in patients receiving X-stop.

    Article  PubMed  Google Scholar 

  37. Nandakumar A, Clark NA, Smith FW, Wardlaw D. Two-year results of X-stop interspinous implant for the treatment of lumbar spinal stenosis: a prospective study. J Spinal Disord Tech. 2013;26(1):1–7. doi:10.1097/BSD.0b013e318227ea2b.

    Article  PubMed  Google Scholar 

  38. Pan B, Zhang Z-J, Lu Y-S, Xu W-G, Fu C-D. Experience with the second-generation Wallis interspinous dynamic stabilization device implanted in degenerative lumbar disease: a case series of 50 patients. Turk Neurosurg. 2014;24(5):713–9. doi:10.5137/1019-5149.JTN.9465-13.0.

    PubMed  Google Scholar 

  39. Grasso G, Giambartino F, Iacopino DG. Clinical analysis following lumbar interspinous devices implant: where we are and where we go. Spinal Cord. 2014;52(10):740–3. doi:10.1038/sc.2014.100.

    Article  CAS  PubMed  Google Scholar 

  40. Schmier J, Halevi M, Maislin G, Ong K. Comparative cost effectiveness of Coflex & interlaminar stabilization versus instrumented posterolateral lumbar fusion for the treatment of lumbar spinal stenosis and spondylolisthesis. Clinicoecon Outcomes Res. 2014;6:125–31. doi:10.2147/CEOR.S59194.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gazzeri R, Galarza M, Neroni M, Fiore C, Faiola A, Puzzilli F, et al. Failure rates and complications of interspinous process decompression devices: a European multicenter study. Neurosurg Focus. 2015;39(4):E14. doi:10.3171/2015.7.FOCUS15244.

    Article  PubMed  Google Scholar 

  42. Liu X, Liu Y, Lian X, Xu J. Magnetic resonance imaging on disc degeneration changes after implantation of an interspinous spacer and fusion of the adjacent segment. Int J Clin Exp Med. 2015;8(4):6097–102.

    PubMed  PubMed Central  Google Scholar 

  43. Huddleston P. X-stop resulted in a higher reoperation rate than minimally invasive decompression, but both decreased symptoms of neurogenic intermittent claudication in patients with lumbar spinal stenosis. J Bone Joint Surg Am. 2015;97(22):1889. doi:10.2106/JBJS.9722.ebo101.

    Article  PubMed  Google Scholar 

  44. • Lønne G, Johnsen LG, Aas E, Lydersen S, Andresen H, Rønning R, et al. Comparing cost-effectiveness of X-Stop with minimally invasive decompression in lumbar spinal stenosis: a randomized controlled trial. Spine. 2015b;40(8):514–20. doi:10.1097/BRS.0000000000000798. This randomized clinical trial was terminated early because of high complication rate in the X-STOP group (33%).

    Article  PubMed  Google Scholar 

  45. Wang K, Zhu Z, Wang B, Zhu Y, Liu H. Bone resorption during the first year after implantation of a single-segment dynamic interspinous stabilization device and its risk factors. BMC Musculoskelet Disord. 2015;16:117. doi:10.1186/s12891-015-0561-y.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yue Z-J, Liu R-Y, Lu Y, Dong L-L, Li Y-Q, Lu EB. Middle-period curative effect of posterior lumbar intervertebral fusion (PLIF) and interspinous dynamic fixation (Wallis) for treatment of L45 degenerative disease and its influence on adjacent segment degeneration. Eur Rev Med Pharmacol Sci. 2015;19(23):4481–7.

    PubMed  Google Scholar 

  47. Van den Akker-van Marle ME, Moojen WA, Arts MP, Vleggeert-Lankamp CLAM, Peul WC. Interspinous process devices versus standard conventional surgical decompression for lumbar spinal stenosis: cost-utility analysis. Spine J. 2016;16(6):702–10. doi:10.1016/j.spinee.2014.10.017.

    Article  PubMed  Google Scholar 

  48. Epstein NE. A review of interspinous fusion devices: high complication, reoperation rates, and costs with poor outcomes. Surg Neurol Int. 2012;3:7. doi:10.4103/2152-7806.92172.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payman Vahedi.

Ethics declarations

Conflict of interest

Joshua Heller reports professional relationships with Nuvasive, Providence Medical, and Convatec.

The other authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Motion Preserving Spine Surgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pintauro, M., Duffy, A., Vahedi, P. et al. Interspinous implants: are the new implants better than the last generation? A review. Curr Rev Musculoskelet Med 10, 189–198 (2017). https://doi.org/10.1007/s12178-017-9401-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-017-9401-z

Keywords

Navigation