Is beta-galactosidase staining a marker of senescence in vitro and in vivo?

Exp Cell Res. 2000 May 25;257(1):162-71. doi: 10.1006/excr.2000.4875.

Abstract

Cytochemically detectable beta-galactosidase (beta-gal) at pH 6.0 has been reported to increase during the replicative senescence of fibroblast cultures and has been used widely as a marker of cellular senescence in vivo and in vitro. In this study, we have characterized changes in senescence-associated (SA) beta-gal staining in early and late passage cultures, cultures established from donors of different ages, virally immortalized cells, and tissue slices obtained from donors of different ages. The effects of different culture conditions were also examined. While we confirm the previous report that SA beta-gal staining increased in low-density cultures of proliferatively senescent cells, we were unable to demonstrate that it is a specific marker for aging in vitro. Cultures established from donors of different ages stained for SA beta-gal activity as a function of in vitro replicative age, not donor age. We also failed to observe any differences in SA beta-gal staining in skin cells in situ as a marker of aging in vivo. The level of cytochemically detectable SA beta-gal was elevated in confluent nontransformed fibroblast cultures, in immortal fibroblast cultures that had reached a high cell density, and in low-density, young, normal cultures oxidatively challenged by treatment with H2O2. Although we clearly demonstrate that SA beta-gal staining in cells is increased under a variety of different conditions, the interpretation of increased staining remains unclear, as does the question of whether the same mechanisms are responsible for the increased SA beta-gal staining observed in senescent cells and changes observed in cells under other conditions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Aging*
  • Biomarkers*
  • Cells, Cultured
  • Cellular Senescence*
  • Child
  • Female
  • Humans
  • Male
  • Middle Aged
  • beta-Galactosidase*

Substances

  • Biomarkers
  • beta-Galactosidase