Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Advance Online Publication
    • Archive
  • About Us
    • About ISASS
    • About the Journal
    • Author Instructions
    • Editorial Board
    • Reviewer Guidelines & Publication Criteria
  • More
    • Advertise
    • Subscribe
    • Alerts
    • Feedback
  • Join Us
  • Reprints & Permissions
  • Sponsored Content
  • Other Publications
    • ijss

User menu

  • My alerts

Search

  • Advanced search
International Journal of Spine Surgery
  • My alerts
International Journal of Spine Surgery

Advanced Search

  • Home
  • Content
    • Current Issue
    • Advance Online Publication
    • Archive
  • About Us
    • About ISASS
    • About the Journal
    • Author Instructions
    • Editorial Board
    • Reviewer Guidelines & Publication Criteria
  • More
    • Advertise
    • Subscribe
    • Alerts
    • Feedback
  • Join Us
  • Reprints & Permissions
  • Sponsored Content
  • Follow ijss on Twitter
  • Visit ijss on Facebook
Research ArticleLumbar Spine

Development and Validation of a Computationally Efficient Finite Element Model of the Human Lumbar Spine: Application to Disc Degeneration

Justin M. Warren, Andre P. Mazzoleni and Lloyd A. Hey
International Journal of Spine Surgery July 2020, 7066; DOI: https://doi.org/10.14444/7066
Justin M. Warren
1Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina
MS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andre P. Mazzoleni
2Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina
PHD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lloyd A. Hey
3Hey Clinic for Scoliosis and Spine Surgery, Raleigh, North Carolina
MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Introduction This study develops and validates an accurate, computationally efficient, 3-dimensional finite element model (FEM) of the human lumbar spine. Advantages of this simplified model are shown by its application to a disc degeneration study that we demonstrate is completed in one-sixth the time required when using more complicated computed tomography (CT) scan–based models.

Methods An osseoligamentous FEM of the L1–L5 spine is developed using simple shapes based on average anatomical dimensions of key features of the spine rather than CT scan images. Pure moments of 7.5 Nm and a compressive follower load of 1000 N are individually applied to the L1 vertebra. Validation is achieved by comparing rotations and intradiscal pressures to other widely accepted FEMs and in vitro studies. Then degenerative disc properties are modeled and rotations calculated. Required computation times are compared between the model presented in this paper and other models developed using CT scans.

Results For the validation study, parameter values for a healthy spine were used with the loading conditions described above. Total L1–L5 rotations for flexion, extension, lateral bending, and axial rotation under pure moment loading were calculated as 20.3°, 10.7°, 19.7°, and 10.3°, respectively, and under a compressive follower load, maximum intradiscal pressures were calculated as 0.68 MPa. These values compare favorably with the data used for validation. When studying the effects of disc degeneration, the affected segment is shown to experience decreases in rotations during flexion, extension, and lateral bending (24%–56%), while rotations are shown to increase during axial rotation (14%–40%). Adjacent levels realize relatively minor changes in rotation (1%–6%). This parametric study required 17.5 hours of computation time compared to more than 4 days required if utilizing typical published CT scan–based models, illustrating one of the primary advantages of the model presented in this article.

Conclusions The FEM presented in this article produces a biomechanical response comparable to widely accepted, complex, CT scan–based models and in vitro studies while requiring much shorter computation times. This makes the model ideal for conducting parametric studies of spinal pathologies and spinal correction techniques.

  • finite element method
  • lumbar spine
  • validation
  • disc degeneration
  • efficient

Footnotes

  • Disclosures and COI: The authors received no funding for this study and report no conflicts of interest.

  • ©International Society for the Advancement of Spine Surgery
Next
Back to top

In this issue

International Journal of Spine Surgery: 19 (S2)
International Journal of Spine Surgery
Vol. 19, Issue S2
1 Apr 2025
  • Table of Contents
  • Index by author

Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on International Journal of Spine Surgery.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Development and Validation of a Computationally Efficient Finite Element Model of the Human Lumbar Spine: Application to Disc Degeneration
(Your Name) has sent you a message from International Journal of Spine Surgery
(Your Name) thought you would like to see the International Journal of Spine Surgery web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Development and Validation of a Computationally Efficient Finite Element Model of the Human Lumbar Spine: Application to Disc Degeneration
Justin M. Warren, Andre P. Mazzoleni, Lloyd A. Hey
International Journal of Spine Surgery Jul 2020, 7066; DOI: 10.14444/7066

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Development and Validation of a Computationally Efficient Finite Element Model of the Human Lumbar Spine: Application to Disc Degeneration
Justin M. Warren, Andre P. Mazzoleni, Lloyd A. Hey
International Journal of Spine Surgery Jul 2020, 7066; DOI: 10.14444/7066
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Comparison of Stand-Alone Anterior Lumbar Interbody Fusion, 360° Anterior Lumbar Interbody Fusion, and Arthroplasty for Recurrent Lumbar Disc Herniation: Focus on Nerve Decompression and Painful Spinal Instability Resolution
  • Association Between Nonsteroidal Anti-inflammatory Drugs Use and Surgical Outcomes Following Posterior Lumbar Fusion: A Medical Claims Database Analysis
  • Postoperative Brace Prescription Practices for Elective Lumbar Spine Surgery: A Questionnaire-Based Study of Spine Surgeons in Japan
Show more Lumbar Spine

Similar Articles

Keywords

  • finite element method
  • lumbar spine
  • validation
  • disc degeneration
  • efficient

Content

  • Current Issue
  • Latest Content
  • Archive

More Information

  • About IJSS
  • About ISASS
  • Privacy Policy

More

  • Subscribe
  • Alerts
  • Feedback

Other Services

  • Author Instructions
  • Join ISASS
  • Reprints & Permissions

© 2025 International Journal of Spine Surgery

International Journal of Spine Surgery Online ISSN: 2211-4599

Powered by HighWire