Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Advance Online Publication
    • Archive
  • About Us
    • About ISASS
    • About the Journal
    • Author Instructions
    • Editorial Board
    • Reviewer Guidelines & Publication Criteria
  • More
    • Advertise
    • Subscribe
    • Alerts
    • Feedback
  • Join Us
  • Reprints & Permissions
  • Sponsored Content
  • Other Publications
    • ijss

User menu

  • My alerts

Search

  • Advanced search
International Journal of Spine Surgery
  • My alerts
International Journal of Spine Surgery

Advanced Search

  • Home
  • Content
    • Current Issue
    • Advance Online Publication
    • Archive
  • About Us
    • About ISASS
    • About the Journal
    • Author Instructions
    • Editorial Board
    • Reviewer Guidelines & Publication Criteria
  • More
    • Advertise
    • Subscribe
    • Alerts
    • Feedback
  • Join Us
  • Reprints & Permissions
  • Sponsored Content
  • Follow ijss on Twitter
  • Visit ijss on Facebook
Research ArticleBiomechanics

Differences in Trabecular Bone, Cortical Shell, and Endplate Microstructure Across the Lumbar Spine

Vivek Palepu, Sai Deepa Rayaprolu and Srinidhi Nagaraja
International Journal of Spine Surgery August 2019, 6049; DOI: https://doi.org/10.14444/6049
Vivek Palepu
US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics, Silver Spring, Maryland
PHD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sai Deepa Rayaprolu
US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics, Silver Spring, Maryland
MS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Srinidhi Nagaraja
US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics, Silver Spring, Maryland
PHD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Background The quality of the vertebral body structures such as endplate, cortex, and trabecular bone is important for understanding the performance of implants, particularly at the bone-implant interface. Although vertebral body structures have been analyzed separately in the literature, there is no comprehensive study to assess these anatomical measurements along with their interrelationships in the lumbar spine. Therefore, the purpose of this study was to assess variations in trabecular microstructure, vertebral endplate thickness and concavity, and vertebral body cortex thickness within the lumbar spine.

Methods A total of 80 lumbar vertebrae (L1-L5) were dissected from 16 human cadaver specimens and imaged with microcomputed tomography to determine trabecular microstructure, vertebral cortex thickness, endplate thickness, and maximum endplate concavity depth. A paired t test and regression analysis were used to determine significant differences (P < .05) between different vertebral levels and correlations between the analyzed anatomical parameters.

Results L1 vertebra had significantly better (P < .02) trabecular bone microstructure (eg, trabecular bone volume fraction) than all other lumbar vertebrae. However, L1 vertebra also had significantly thinner (P ≤ .02) anterior, left, and right cortices compared to all other vertebral levels. Within L3-L5 intervertebral disc spaces, cranial endplates had significantly greater (P ≤ .03) thickness and maximum concavity depth compared to their respective caudal endplates. No strong correlations were observed between trabecular bone microstructure, maximum endplate concavity depth, vertebral cortex, and endplate thickness parameters.

Conclusions Detailed reference data of these anatomical parameters for each lumbar vertebral body can aid in improved understanding of bone quality, particularly when assessing different implant designs and fixation approaches. Moreover, such anatomical knowledge may help clinicians with optimal implant design selection and surgical placement of these devices into their respective locations.

  • endplate concavity depth
  • trabecular bone microstructure
  • vertebral cortex thickness
  • endplate thickness
  • lumbar spine
  • anatomy

Footnotes

  • Disclosures and COI: The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this article.

  • ©International Society for the Advancement of Spine Surgery
Next
Back to top

In this issue

International Journal of Spine Surgery: 19 (S2)
International Journal of Spine Surgery
Vol. 19, Issue S2
1 Apr 2025
  • Table of Contents
  • Index by author

Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on International Journal of Spine Surgery.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Differences in Trabecular Bone, Cortical Shell, and Endplate Microstructure Across the Lumbar Spine
(Your Name) has sent you a message from International Journal of Spine Surgery
(Your Name) thought you would like to see the International Journal of Spine Surgery web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Differences in Trabecular Bone, Cortical Shell, and Endplate Microstructure Across the Lumbar Spine
Vivek Palepu, Sai Deepa Rayaprolu, Srinidhi Nagaraja
International Journal of Spine Surgery Aug 2019, 6049; DOI: 10.14444/6049

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Differences in Trabecular Bone, Cortical Shell, and Endplate Microstructure Across the Lumbar Spine
Vivek Palepu, Sai Deepa Rayaprolu, Srinidhi Nagaraja
International Journal of Spine Surgery Aug 2019, 6049; DOI: 10.14444/6049
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Sequential Anterior Longitudinal Ligament Release With Expandable Spacers for Lordosis Correction in Anterior-to-Psoas Lumbar Interbody Fusion: A Radiographic and Biomechanical Study
  • Comparative Biomechanical Analysis of Anterior Lumbar Interbody Fusion and Bilateral Expandable Transforaminal Lumbar Interbody Fusion Cages: A Finite Element Analysis Study
  • Impact of Different Operative Techniques for Patients With Adolescent Idiopathic Scoliosis on Frontal Curve Correction and Sagittal Balance
Show more Biomechanics

Similar Articles

Keywords

  • endplate concavity depth
  • trabecular bone microstructure
  • vertebral cortex thickness
  • endplate thickness
  • lumbar spine
  • anatomy

Content

  • Current Issue
  • Latest Content
  • Archive

More Information

  • About IJSS
  • About ISASS
  • Privacy Policy

More

  • Subscribe
  • Alerts
  • Feedback

Other Services

  • Author Instructions
  • Join ISASS
  • Reprints & Permissions

© 2025 International Journal of Spine Surgery

International Journal of Spine Surgery Online ISSN: 2211-4599

Powered by HighWire